DRL

AD

MEMORANDUM REPORT NO. 2761 (Supersedes IMR No. 474)

TECHNICAL LIBRARY

COUPLING OF X-RAY DEPOSITION TO STRUCTURAL RESPONSE

Henry L. Wisniewski

June 1977

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

USA ARMAMENT RESEARCH AND DEVELOPMENT COMMAND USA BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
BRL MEMORANDUM REPORT NO. 2761				
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
COUPLING OF X-RAY DEPOSITION TO STRESPONSE	Final			
		6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)		
Henry L. Wisniewski				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
USA Ballistic Research Laboratory				
Aberdeen Proving Ground, Maryland	21005	RDT&E 1W162118AH75		
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
US Army Materiel Development		JUNE 1977		
and Readiness Command		13. NUMBER OF PAGES		
5001 Eisenhower Avenue, Alexandria	, VA 22333	78		
14. MONITORING AGENCY NAME & ADDRESS(if different	at from Controlling Office)	15. SECURITY CLASS. (of this report)		
		UNCLASSIFIED		
		150. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)				

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Supersedes BRL Interim Memorandum Report No. 474.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

X-Ray Loading

Blow-off

Structural Response

Finite-Difference

Flat Plate

Spall

20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (bas)

The need for a reliable and efficient method to predict the structural response of target structures to x-ray loading prompted the coupling of the x-ray deposition program, RIP, to the structural response program, PETROS 3. The RIP program predicts that material on the front face will blow-off as liquid-solid, liquid and vapor, thus delivering an impulsive load. Simultaneously a stress wave is transmitted through the residual solid material causing spallation on the back face. (Continued)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) Item 20 - Continued The RIP program was modified to provide specific output characteristics of the residual solid material namely: thickness, mean transverse velocity, and through-thickness distribution of temperature and tangential stresses which remain after the transverse elastoplastic stress waves have dissipated. The BRL version of PETROS 3 program was then modified to accept these data as initial conditions. A structural response test case was treated using both undegraded and degraded material properties, the solutions of which show a large disparity in output results.

TABLE OF CONTENTS

		Page
	LIST OF ILLUSTRATIONS	5
	LIST OF TABLES	7
I.	INTRODUCTION	9
II.	CALCULATIONAL PROCEDURE	10
III.	RIP INPUT AND RESULTS	15
IV.	PETROS 3 INPUT AND RESULTS	24
V.	CONCLUSION	37
VI.	ACKNOWLEDGMENT	37
	REFERENCES	38
	APPENDICES	
	A - CODING CHANGES TO RIP	41
	B - BRL-RIP PLOTTING PROGRAM	57
	C - CODING CHANGES TO PETROS 3	65
	D - TEMPERATURE VARIATION DURING STRUCTURAL RESPONSE	69
	DISTRIBUTION LIST.	71

LIST OF ILLUSTRATIONS

Figure		Page
1.	Representation of the Coupling between RIP and PETROS 3	11
2.	Time History of the Coupling	12
3.	Flat Plate Geometry (6061-T6 Aluminum)	14
4.	10 Kev Blackbody Dose Profile	18
5.	Material Break-Up	19
6.	Transverse Stress Distribution	20
7.	Pressure Distribution	21
8.	Residual Tangential Stress Distribution	22
9.	Temperature Distribution	23
10.	Kinetic Energy of Solid Material	25
11.	Velocity of Mass Center of Unspalled Solid Material	26
12.	Finite Difference Mesh for Undeformed Plate	27
13.	Yield Stress Dependence on Temperature for 6061-T6 Aluminum Alloy	29
14.	Elastic Moduli of 6061-T6 Aluminum Alloy versus Temperature	30
15.	Deformed Reference Surface at Time Step 600	32
16.	Deformed Reference Surface at Time Step 1200	33
17.	Transverse Displacement of Midpoint of Plate	34
18.	Surface Strain on the Top and Bottom Surface	35
19.	Energy Balance Diagrams	36
D-1.	Temperature Profiles at Beginning and End of Structural	. 70

LIST OF TABLES

Table		Page
I.	Input for RIP Calculation	16
II.	Gray Equation of State Parameters for 6061-T6 Aluminum	17
III.	Cold and Heated Material Properties	31
A-1.	RIP Output Summarizing the PETROS 3 Input	48

I. INTRODUCTION

The principal kill mechanism of target structures in an exoatmospheric nuclear environment is most likely to be x-ray deposition and the accompanying material response due to heating. The various material responses can consist of melting, vaporization, shock wave propagation, and spallation.

The physical phenomenology of the material response involved can be related as follows. Initially the external surface (front face), assuming slab geometry, is heated almost instantaneously to high temperatures causing material to melt and blow-off in the form of vapor, liquid-vapor, liquid, or solid-liquid. The impulsive load due to the blow-off creates a stress wave that propagates into the interior of the target toward the bottom surface (back face). Simultaneously the material below the top surface is heated, inducing a compressive stress which propagates to the bottom surface (back face) and reflects as a rarefaction tensile stress wave. At some point near the bottom surface this rarefaction tensile stress wave overpowers the compressive stress wave moving toward the bottom surface, and the high tension produced may cause spalling.

The consequence of the material response is that it leaves the target in a weakened condition. In order to have a capability to predict damage to the structure, ${\rm RIP}^1$, 2 , 3 , 4 was coupled to PETROS 5 . The coupling was done on the premise that calculations of material response (which normally cover a period of a few microseconds, at most) and predictions of structural response (which generally involve response durations on the order of milliseconds) can be performed consecutively rather than requiring a simultaneous treatment.

¹R. H. Fisher, G. A. Lane, and R. A. Cecil, "RIP, A One-Dimensional Material Response Code - User's Guide," Systems, Science and Software, Report 3SR-751-I, September 1972.

²R. H. Fisher, G. A. Lane, and R. A. Cecil, "RIP, A One-Dimensional Material Response Code - Code Reference Manual," Systems, Science and Software, Report 3SR-751-II, September 1972.

³R. A. Kruger, "The Material Response Program, RIP," Systems, Science and Software, Report 3SR-120, December 1969.

⁴RIP, A One-Dimensional Material Response Code. Systems, Science and Software, Contract No. SSS-R-72-1324.

⁵S. Atluri, E. A. Witmer, J. W. Leech, and L. Morino, "PETROS 3: A Finite Difference Method and Program for the Calculation of Large Elastic-Plastic Dynamically Induced Deformations of Multilayer Variable - Thickness Shells," U.S. Army Ballistic Research Laboratories, Contract Report No. 60, November 1971 (AD #890200L).

This report presents the calculational procedure used to predict the structural response of a 6061-T6 aluminum flat plate. The input and results of RIP calculations are presented along with a comparison of two structural response calculations utilizing PETROS 3.

Appendix A contains the code modifications required in the RIP code to permit the appropriate data to be extracted for use as input to the PETROS 3 structural response calculations. In order to expedite analysis of structural response output data, a plotting program was developed. A description of this program is presented in Appendix B along with a listing. The BRL version of PETROS 3 required some minimal modifications and these are described in Appendix C. Appendix D contains temperature variation data related to temperature changes which occurred during the structural response calculations.

II. CALCULATIONAL PROCEDURE

A physical description of the problem is portrayed diagrammatically in Figure 1. The target is a flat rectangular plate which is partitioned into numerous rectangular columns of material made up of smaller volumes of material called mass zones. The purpose of this geometry is the accommodation of the fact that the RIP code is one-dimensional. the RIP calculations, it is sufficient to concentrate on a specific column. As Figure 1 indicates, the x-rays impinge on the top mass zone of the column thus depositing energy and consequently heating the material to high temperatures. A stress wave is generated and the situation shown in Figure 1 develops. Some of the material is removed from the front face as liquid, liquid-solid, vapor and vapor-liquid (for this work, only a phase change to liquid and liquid-solid takes place). Stress waves in the solid material caused both by this material removal and by non-uniform heating, after reflection from the bottom surface (freeboundary), resulted in sufficiently large tensile stress to cause spallation.

The RIP code employs a Lagrangian finite difference method and computes the material response due to rapid heating by solving simultaneously the equations of conservation of mass, momentum, and energy.

The Gray* equation of state was used in conjunction with the simple von Mises elastic-plastic model, in which the yield behavior is calculated from the shear modulus and yield strength. An energy dependent peak tensile strength spall model was used where the spall strength is a function of the melt energy. If the energy is greater than the melt

The Gray equation of state was chosen because temperature is computed directly. If any other equation of state options provided by RIP were used, additional calculations would have to be added.

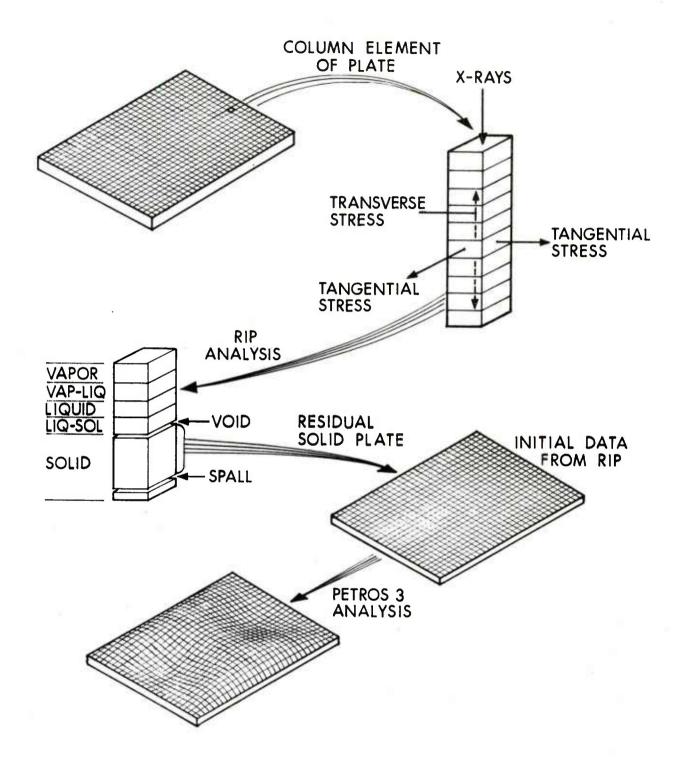


Figure 1. Representation of the Coupling between RIP and PETROS 3

energy, the material is assumed to have zero strength and spallation will be initiated. If the energy is less than the melt energy, the tensile stress level required to initiate spallation is assumed to be the value of the spall strength.

The coupling was performed by running the RIP program as shown in Figure 2, from t_R = 0, with an x-ray radiation source of 10 kev blackbody spectrum, a fluence level of 80 cal/cm^{2*} and a shine time of 75 nanoseconds, to a termination time, t_{RF} . This time is determined by a damping model described in Reference 6, page 46. This damping model requires that each piece of solid material be brought to a uniform velocity, rather than to a static equilibrium. It was incorporated in RIP so that after

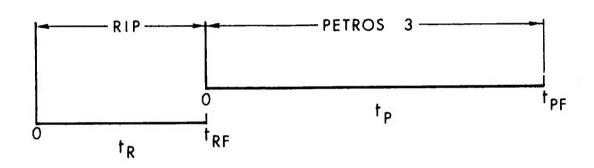


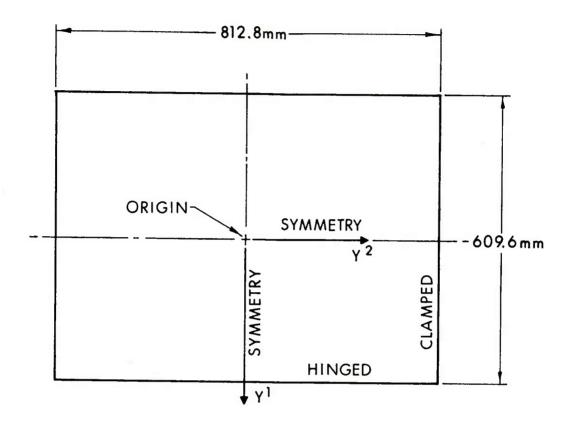
Figure 2. Time History of the Coupling

considerable time transverse (through-thickness) wave motion would vanish throughout the solid material leaving the residual material and each spall fragment with individual uniform velocity. The damping can be activated at any specified time step after the plastic work and spallation are essentially complete. This determination was arrived at by analyzing the results of a run without damping as explained in Section III of this report.

 $^{^{\}star}$ A fluence level of 80 cal/cm 2 was selected in order to guarantee blowoff on the front face and spallation on the backface.

⁶J. M. Santiago, H. L. Wisniewski, N. J. Huffington, Jr., "A User's Manual for the REPSIL Code," U.S. Army Ballistic Research Laboratories, Report No. 1744, October 1974. (AD #A003176)

At RIP termination time, t_{RF} , the largest residual solid and its physical data, thickness, mean transverse velocity, through-thickness distribution of temperature and tangential stresses are transferred to a rectangular flat plate to serve as initial conditions to the BRL version of PETROS 3 calculations as shown in Figure 1.


PETROS 3 also uses a finite difference method. It solves the partial differential equations of motion that govern large deflections and elastic-plastic (von Mises model, consistent with RIP calculations) behavior of thin Kirchhoff shells exposed to impulsive/pressure loadings.

In working with the RIP program, it was found that the equation of state, (Gray EOS), performs the calculation as if the material were rapidly heated, while the elastic-plastic (von Mises model) calculation is carried out as if the material is cold (room temperature) or at least values of elastic modulus and yield stress remain constant. The basis for this assumption is that for the short time period covered by the RIP calculation, there is insufficient time for thermal degradation of material properties. Proof of this remains to be established for material which has been heated nearly to its melting point. However, due to this inconsistency in RIP between the equation of state and the elastic-plastic calculation it was felt worthwhile to attempt to bracket the true response by performing two PETROS 3 calculations using (a) undegraded material parameters (results labeled cold material properties) and (b) material properties associated with long soak times at elevated temperatures (results labeled hot material properties).

At time t_p = 0, the PETROS 3 program reads in the geometry of the plate and the physical data of the material from the RIP solution. Mean transverse velocity is uniform for every finite difference mesh point in the y^1 , y^2 plane (see Figure 3). In the y^3 direction, the thickness, which is uniform for the plate, is divided into a number of discrete layers at each mesh point.

Values of tangential stress and temperature* are constant for each layer in the Y^1 , Y^2 plane, but vary for each layer. The number and thickness of the layers depend on the number of points one wishes to use with the Gaussian integration in determining force and moment resultants.

^{*}The temperature distribution throughout the structural response solution remains constant. A discussion of this point is presented in Appendix C.

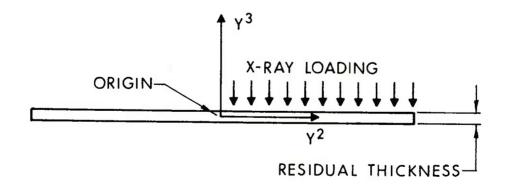


Figure 3. Flat Plate Geometry (6061-T6 Aluminum)

III. RIP INPUT AND RESULTS

The input cards listed in Table I are the input parameters required to perform the RIP calculation. They are defined in Reference 1, pages 3 through 33. The parameters for the Gray equation of state subroutine are listed in Table II.

Figure 4 shows the energy per gm (dose) deposited through the initial thickness (5 mm) which was computed by the energy deposition and transport program FSCATT $^{7, 8}$. This program serves as the x-ray radiation source for RIP. Figure 5 shows a representation of the column element of material at the end of the RIP calculation. It has gone through various phase changes due to x-ray energy deposition. The loss of material due to blowoff on the front-face is in the form of liquid and liquid-solid material, while the loss of material on the back-face is caused by spallation in the solid region.

The RIP code calculates the hydrostatic pressure P and the deviatoric stress, SD, (which is actually the component of deviatoric stress, σ_3' , associated with the through-thickness direction). The transverse (through-thickness) stress, σ_3 , (see Figure 5) is given* by σ_3 = σ_3' + P. In order to determine residual stresses, the RIP code has been modified to provide for damping out the transverse stress waves. Figure 6 shows the distribution of transverse stresses at t_{RF} . It may be seen that these stresses are negligible throughout the thickness of the solid material. However, the corresponding hydrostatic pressures shown in Figure 7 are non-negligible.

Since we know that the sum of the deviatoric stress components must vanish and that the tangential stresses, σ_1 , σ_2 , must be equal for the one-dimensional RIP analysis, it follows that $\sigma_1 = \sigma_2 = P - \frac{1}{2}$ SD, as plotted in Figure 8. It should be noted that, for the σ_3 stresses fully damped out, $\sigma_1 = \sigma_2 = 1.5$ P. These tangential stresses are the combined result of the inelastic deformation produced by the transverse stress waves and the thermal stresses corresponding to the temperature distribution at t_{RF} (see Figure 9).

R. H. Fisher and J. W. Wiehe, "A User's Guide to the FSCATT Code," Systems, Science and Software, Report 3SR-318, November 1970.

⁸R. H. Fisher and R. A. Kruger, "A Numerical Treatment of Scattering and Fluorescence in Plane Geometry," Systems, Science and Software, Report 3SR-119, September 1969.

 $^{^{\}star}$ For the RIP analysis, compressive stresses are considered positive.

Table I. Input for RIP Calculation

```
B1=1.352
(AMASS)
(MATBND)
                B31=100
                841 = 103
(MATLID)
(NMTRLS)
                861=1
(MAXCYCL)
                B84=995
(MUDE)
                B85=0
(XAMT)
                B87=6.0E-04
                 B245=2*-1,3*0,4
(IOUNIT)
(NABS)
                 8291=1,17
                 B296=18,11
(NORD)
                 B313=1C00
(NOUMP)
(NPRINT)
                 B315=100
(TPRINT)
                 B316=1.92396E-06
(DISCPT)
                 B1329=12A
         X-RAY LOADING ON 6061-T6 ALUMINUM
                      X1051=1
(ICCMBZ)
(SPALL CRITERIA)
                      X1052=1
(NSPALL)
                      X1001=3
(BBTEMP)
                 B182=10.0
                 8185=-80.0
(ENERGY1)
(SSTART1)
                 B219=0.
                 B221=.75E-07
(SSTOP1)
(NFIT)
                 B227=1
                 V661=2.704,0.,0.,0.,C.,5.21E5,2.75162E11,2.69948E9,
(GEOSAL)
                      -1.3E10, 1.2E11, 3.05E10, 1.1E10, 7.15E9, 0., 0.,
                      1.338, 2.18, 1.68, .666667, 8.7E-9, 1340., 0., 0., 26.98,
                      .452..190,47.,1.,11.4696E-5,3.
(END OF DATA)
                      END
        400
    1
    1
                      See Appendix A for detailed explanation.
 1.
 1.80E-06
BBCDYX
                -1
                                .006
                 1
                          14
                                 .01
                          12
                 1
                          29
                                .0025
                 1
                 1
                          24
                                 .002
1
                 1
                          13
                                 .9795
```

Table II. Gray Equation of State Parameters for 6061-T6 Aluminum

Symbol Symbol	Numeri	cal Value	Property		
ρ _o	2.704	gm/cm ³	Ambient density 9		
Co	5.21×10^5	cm/sec	Bulk sound speed 9		
AMU	2.751×10^{11}	dynes/cm ²	Shear Modulus g		
Yo	2.699×10^9	dynes/cm ²	Yield strength g		
о О	-1.3×10^{10}	dynes/cm ²	Spall limit ¹		
E_{VV}	1.2×10^{11}	ergs/cm	Material has vaporized $^{\it 1}$		
E _{LV}	3.05×10^{10}	ergs/cm	Material commences to vaporize 1		
E_LM	1.10×10^{10}	ergs/cm	Material has completed melting 1		
E_{SM}	7.15×10^9	ergs/cm	Material commences to $melt^1$		
S	1.338		Hugoniot parameter 12		
γ_{o}	2.18	dimensionless	Lattice gamma ¹²		
a	1.68		$a = \gamma_05^{12}$		
$^{\gamma}_{ m e}$.6667		Electronic gamma ¹¹		
g _e	8.7×10^{-9}	Mbar cm ³ /mole deg ²	Electronic energy coefficient 10		
T _{mo}	1340.	o _K	Melting temperature parameter 12		
EOH	0.	Mbar cm ² /gm	Energy at reference state 12		
AW	26.98	gm/mole	Atomic weight 10		
v_J	.452	cm ³ /gm	Volume at which EOS are joined 12		
v_{b}	.190	cm ³ /gm	Excluded volume for vapor phase 12		
a _y	47.	Mbar (cm ³ /mole)	Coefficient of attractive potential for vapor 12		
θ	1.0	dimensionless	Join parameter 12		
DELS	11.469×10^{-4}	Mbar cm ³ /mole deg	Entropy of melting 12		

⁹B. J. Kohn, "Compilation of Hugoniot Equations of State," Air Force Weapons Laboratory, April 1969 (page 19).

¹⁰Sensitivity of Material Response Calculations to the Equation of State Model, Systems, Science and Software, Contract Report No. 130 (SSS-R-73-1910), December 1973 (page 24).

¹¹ E. B. Royce, "Gray, A Three-Phase Equation of State for Metals," Lawrence Livermore Laboratory, Report UCRL-51121, September 1971 (page 38).

¹²R. B. Oswald, Jr., F. B. McLean, D. R. Schallhorn, and T. R. Oldham, "The Dynamic Response of Aluminum to Pulsed Energy Deposition in the Melt-Dominated Regime," U.S. Harry Diamond Laboratories, HDL-TR-1624, July 1973 (page 11).

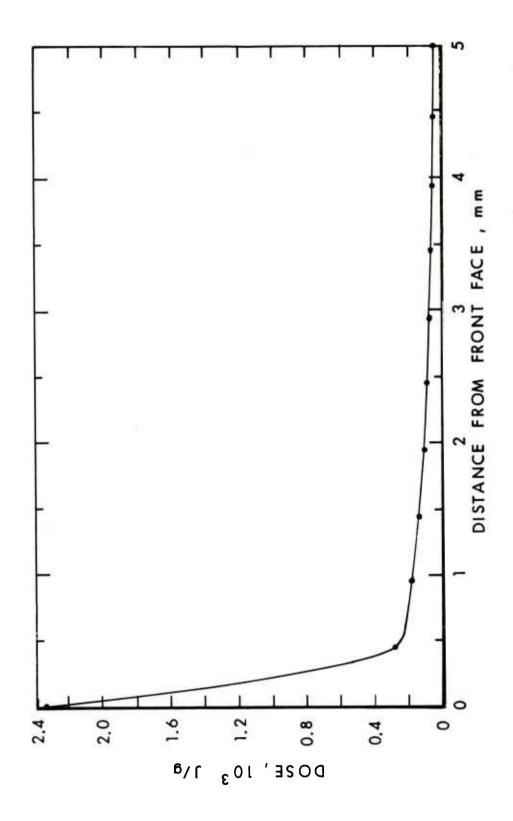


Figure 4. 10 Kev Blackbody Dose Profile

FRONT - FACE

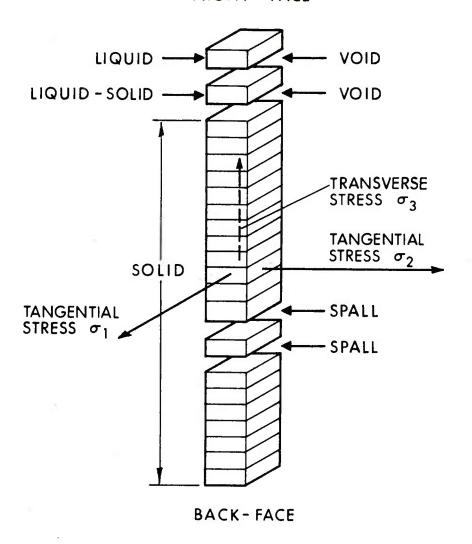


Figure 5. Material Break-Up

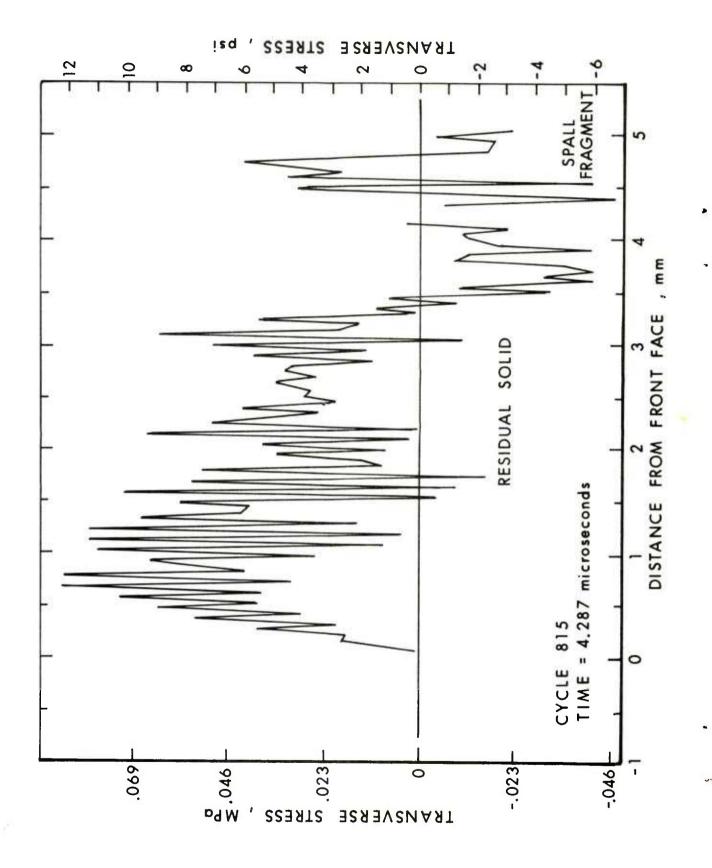


Figure 6. Transverse Stress Distribution

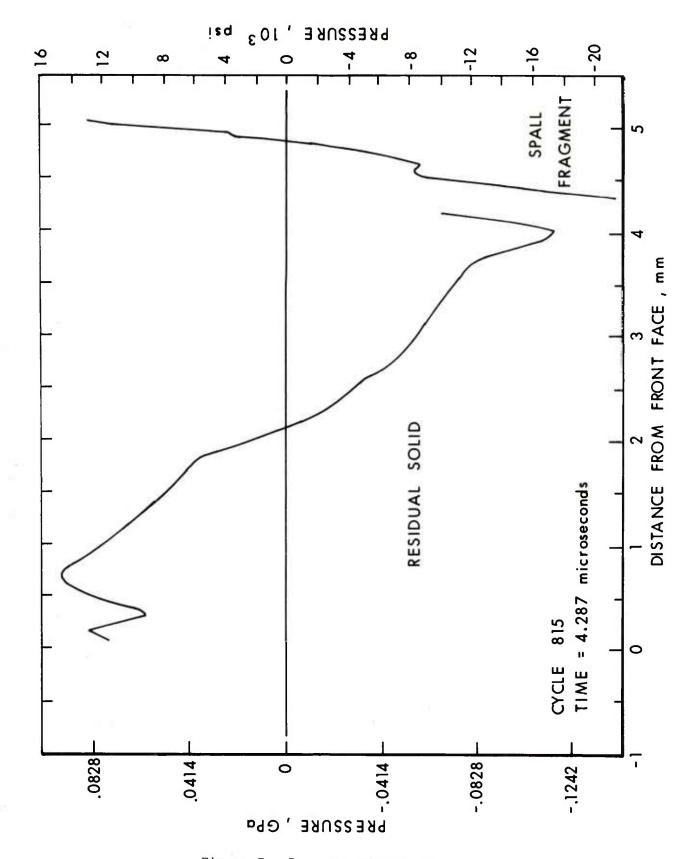


Figure 7. Pressure Distribution

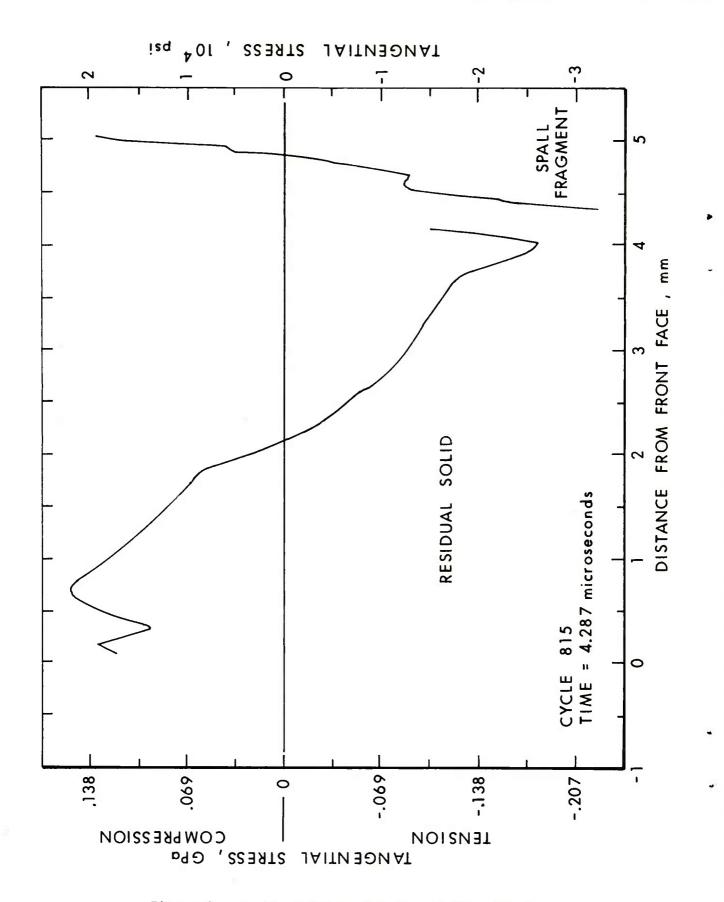


Figure 8. Residual Tangential Stress Distribution

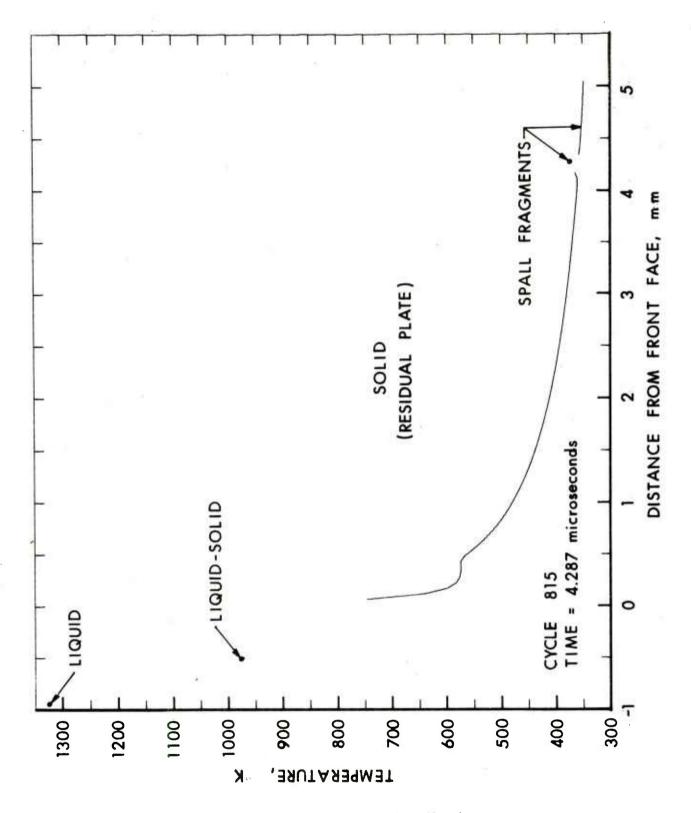


Figure 9. Temperature Distribution

As previously mentioned, damping is introduced into the RIP code calculations after plastic flow and spallation have subsided. This is illustrated in Figure 10, which presents the kinetic energy of the solid material as a function of time. Where there is more than one curve for a period of time, the kinetic energies of the residual material and of one or more spall fragments are displayed individually. The lowest curve gives the kinetic energy of the residual plate. Spallation occurs in the manner illustrated in Figure 5 with separation and coalescence as indicated in Figure 10. This case was initially run without damping to 2,400 nanoseconds (plotted as dashed lines). By examination of this solution it was determined that plastic work and spallation is completed by 1,800 nanoseconds. Therefore it would be satisfactory to introduce damping at 1,800 nanoseconds. This was done in the second run which self-terminated at 4,298 nanoseconds when a criterion for smallness of residual oscillations was satisfied. The corresponding variation of the velocity of the mass center of a portion (to be defined) of the solid material is shown in Figure 11. Since the thickness of residual material was not known until the completion of the calculation, it was not practical to plot the mass center velocity of that material alone. Consequently, Figure 11 includes all the variable mass of solid material which has not spalled off at the particular time. After 2,500 nanoseconds the plot represents the velocity of the residual solid material.

IV. PETROS 3 INPUT AND RESULTS

PETROS 3 code modifications designed to accept the RIP output data are explained in Appendix C. The normal PETROS 3 input is described in Reference 5, pages 160 through 171. To take advantage of symmetry only a quarter of the plate, as shown in Figure 3, is treated. The problem is solved by utilizing a 12 × 16 square mesh with one layer of material and a thickness of 4.093 mm (0.16116 inches) (see Figure 12). An impulsive velocity of 0.83439 m/sec (32.85 in/sec) was distributed uniformly over the surface* of the plate.

In the structural shell response analysis, stresses are calculated ad discrete layers in the through-thickness direction. These calculations can be performed using "room temperature" material properties or thermally degraded properties. For the latter case yield stress ¹³ and elastic moduli ¹⁴

^{*}Along the row of mesh points adjacent to a clamped boundary the PETROS 3 code will modify this initial velocity for compatibility with the finite difference clamped edge boundary condition.

Engineering Data for Aluminum Structures, The Aluminum Association, New York, N. Y., August 1969.

¹⁴ J. Lipkin, J. C. Swearengen, C. H. Karnes, "Mechanical Properties of 6061-T6 Aluminum after Very Rapid Heating," Sandia Laboratories Report SC-RR-72-0020, March 1972.

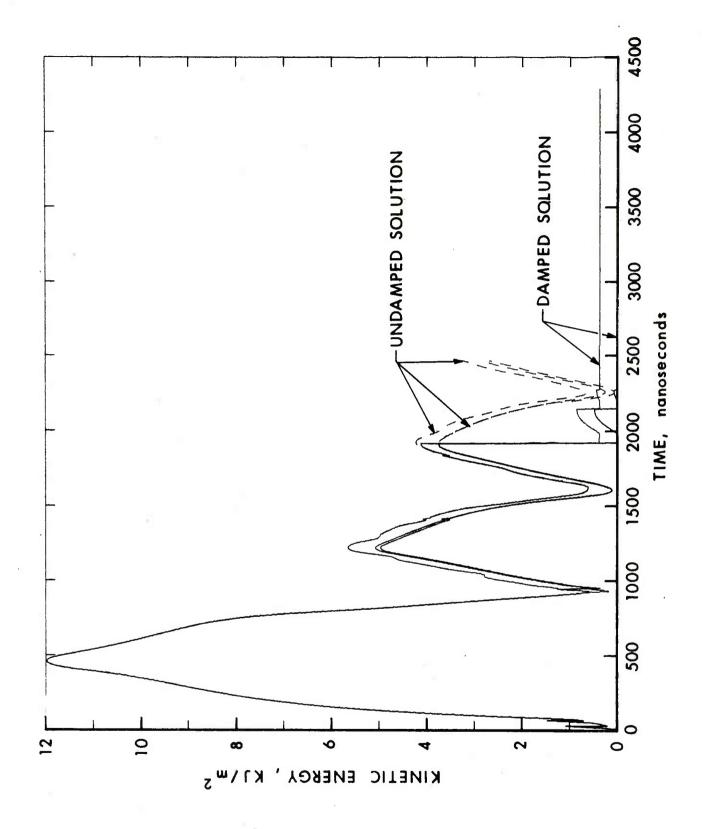


Figure 10. Kinetic Energy of Solid Material

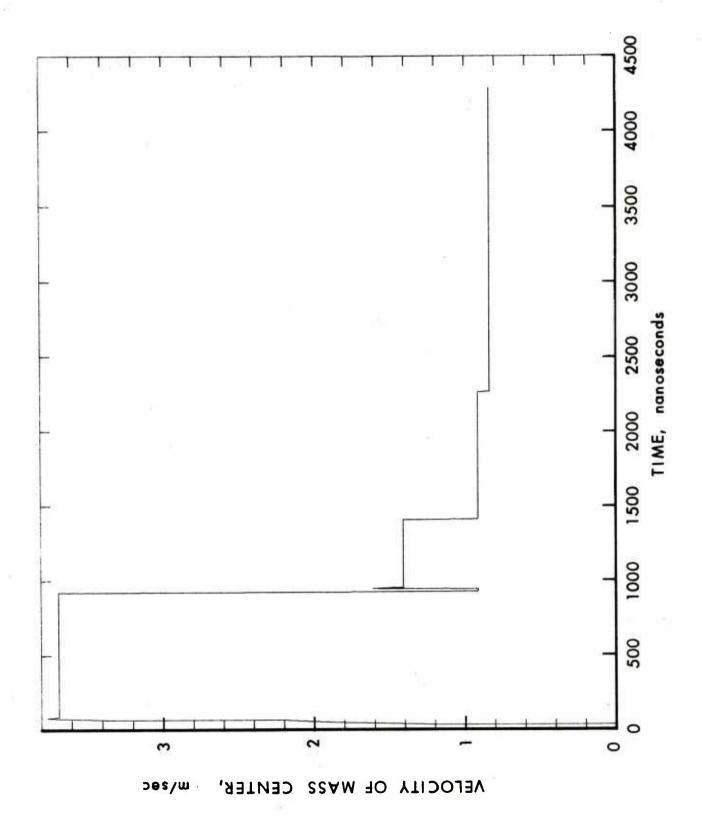


Figure 11. Velocity of Mass Center of Unspalled Solid Material

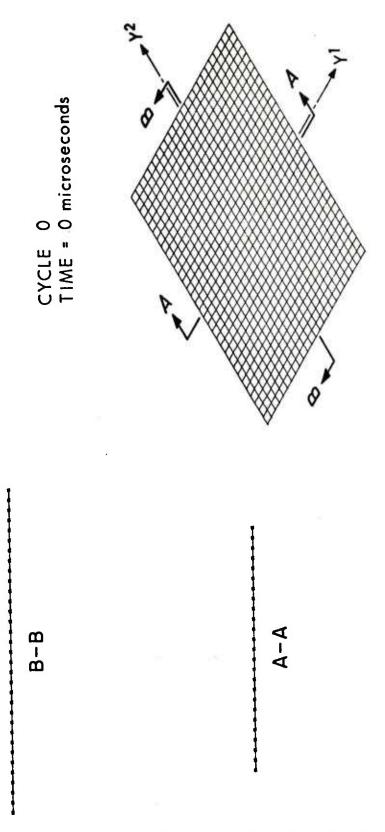


Figure 12. Finite Difference Mesh for Undeformed Plate

as function of temperature, as represented by Figures 13 and 14, were used. Poisson's ratio was calculated as a function of temperature from the data of Figure 14 by the known relationship among the elastic constants of an isotropic material:

$$v = \frac{E}{2G} - 1$$

In PETROS 3 a Gaussian quadrature integration as explained in Reference 15, page 41, is used to evaluate the inplane stress and moment resultants at each mesh point. For the results which follow, values of stress at six Gauss points were used for the initial tangential stress through the thickness of the plate. The values of both cold and heated material properties used in these calculations are listed in Table III for each Gauss point through the thickness.

The deflection patterns predicted for cold and heated material properties are compared at two successive times in Figures 15 and 16. On the left of each isometric plot the deformed and undeformed crosssection and profile of the plate can be compared. The deflection of the midpoint of the plate as a function of time is shown in Figure 17. For both solutions, the plate initially moves downward due to the blow-off impulse but the locked-in stresses (from the RIP solution) prevail and the plate eventually assumes a buckled upward configuration. Not surprisingly, the excursions in both directions are greater for the thermally degraded properties solution.

Figure 18 shows elongational strain versus time in the Υ^1 and Υ^2 directions (see Figure 12) at the center of the plate on the upper and lower surfaces for cold and heated material properties. In comparing these strains, one sees that the largest strain component occurs on the lower surface in Υ^1 direction.

Figure 19 shows the energy balance information produced by the PETROS 3 code for the cases under consideration. These results are useful both for detection of possible numerical instabilities and for determining when the solution may be terminated. The information for the cold material properties shows that the response was principally elastic with very little plastic work having taken place during the structural response phase. By contrast, a large amount of plastic work is evident for the solution using thermally degraded material properties. This plastic work can be interpreted as being composed of two parts,

¹⁵ L. Morino, J. W. Leech and E. A. Witmer, "PETROS 2: A New Finite-Difference Method and Program for the Calculation of Large Elastic-Plastic Dynamically-Induced Deformations of General Thin Shells," BRL CR 12 (MIT-ASRL TR 152-1), December 1969. (In two parts: AD 708773 and AD 708774).

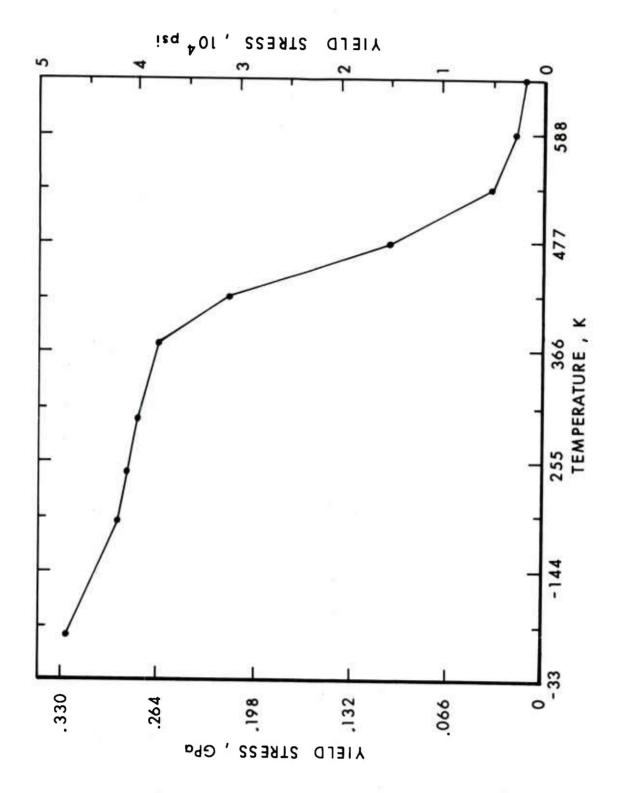


Figure 13. Yield Stress Dependence on Temperature for 6061-T6 Aluminum Alloy

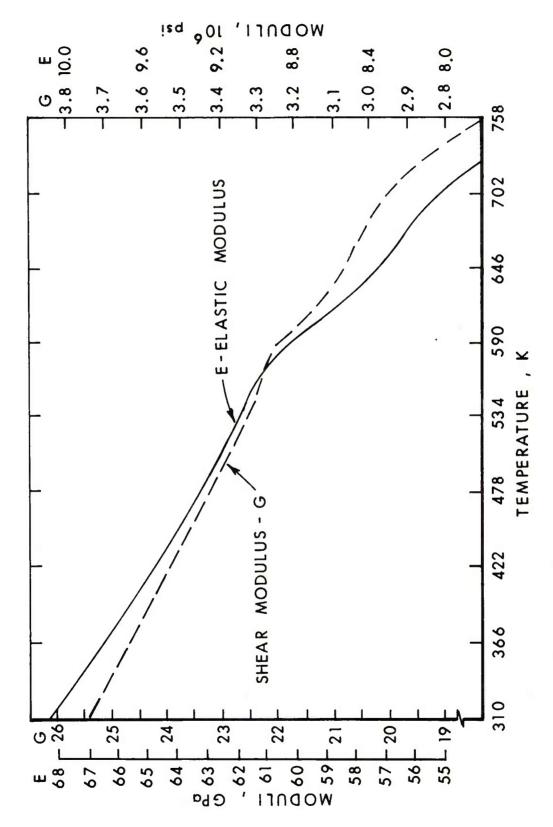
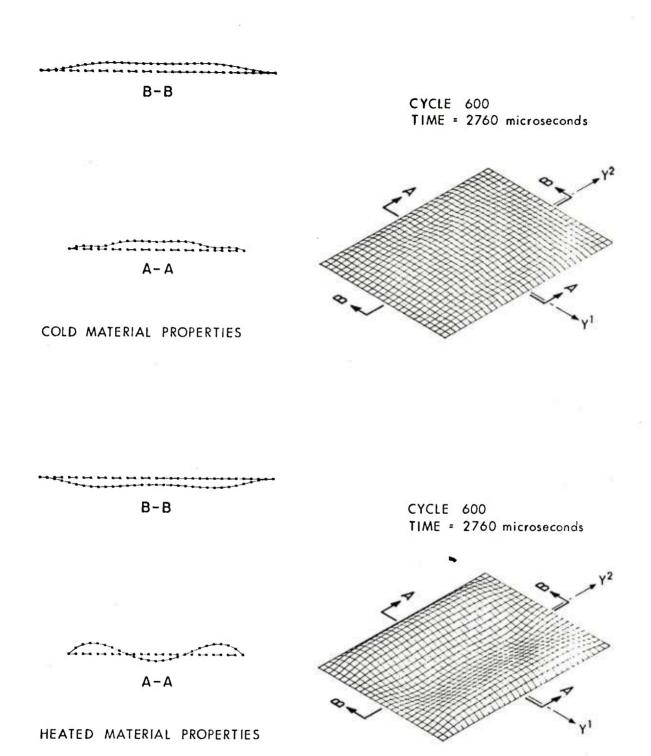


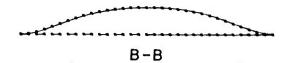
Figure 14. Elastic Moduli of 6061-T6 Aluminum Alloy versus Temperature

Table III

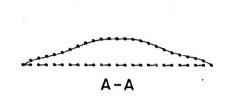

Cold Material Properties (Room Temperature)

	Yield	Strength	GPa	.29	. 29	. 29	. 29	.29	.29
`	Poisson's	Ratio		5.	.3	.3	.3	.3	5.
,	Elastic	Wodulus	GPa	73.8	73.8	73.8	73.8	73.8	73.8
4		Density	Kg/m ⁵	2768.	2768.	2768.	2768.	2768.	2768.
	4	Stress	GPa	133	151	074	.050	.109	.180
	40.00	D1Stance.	шш	.138	.693	1.558	2.535	3.400	3.955
	c	פ		П	7	3	4	2	9

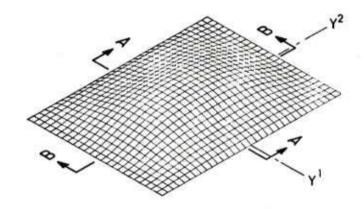
Heated Material Properties

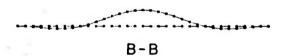

Yield Strength	GPa	.017	.051	.198	.248	.264	. 269
Poisson's Ratio		.367	.365	.352	.348	.347	.347
Elastic Modulus	GPa	60.1	63.0	65.4	66.7	67.4	67.7
Density	Kg/m^3	2641.	2660.	2676.	2681.	2684.	2684.
Stress	GPa	133	151	074	.050	.110	.179
Temperature	Ж	.009	516.	432.	391.	371.	361.
Distance*	mm	.138	. 693	1.558	2.535	3.400	3.955
9		Н	7	3	4	Ŋ	9

* From front face.

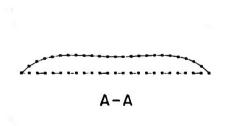


(DEFLECTIONS MAGNIFIED 10x)

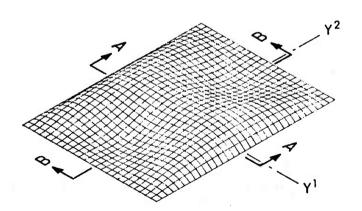

Figure 15. Deformed Reference Surface at Time Step 600



CYCLE 1200 TIME = 5520 microseconds



COLD MATERIAL PROPERTIES



CYCLE 1200 TIME = 5520 microseconds

HEATED MATERIAL PROPERTIES

(DEFLECTIONS MAGNIFIED 10x)

Figure 16. Deformed Reference Surface at Time Step 1200

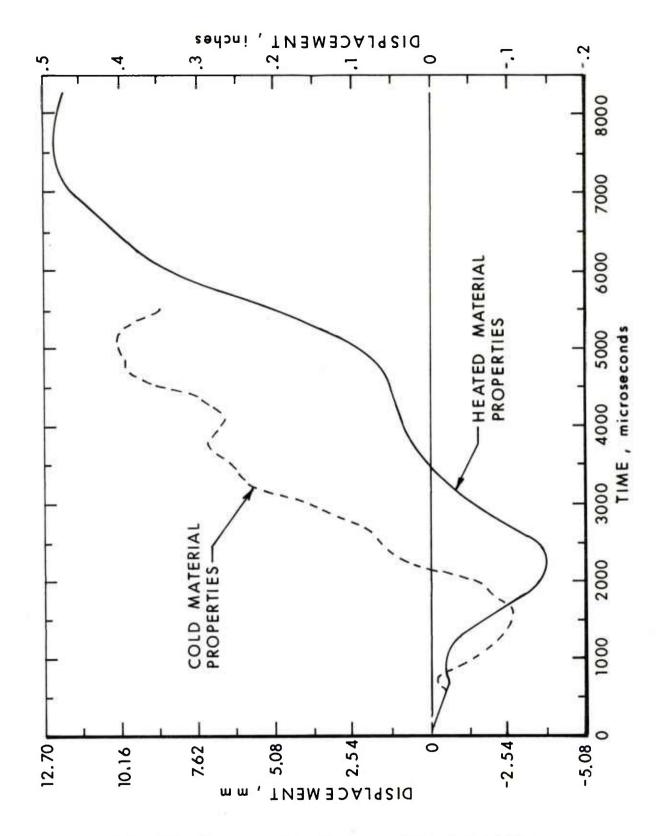
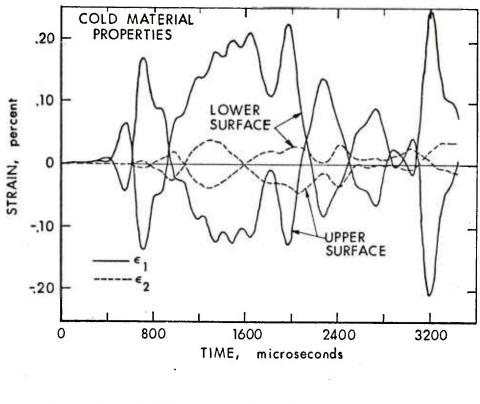



Figure 17. Transverse Displacement of Midpoint of Plate

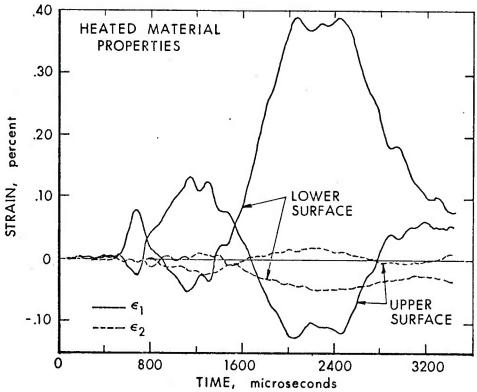
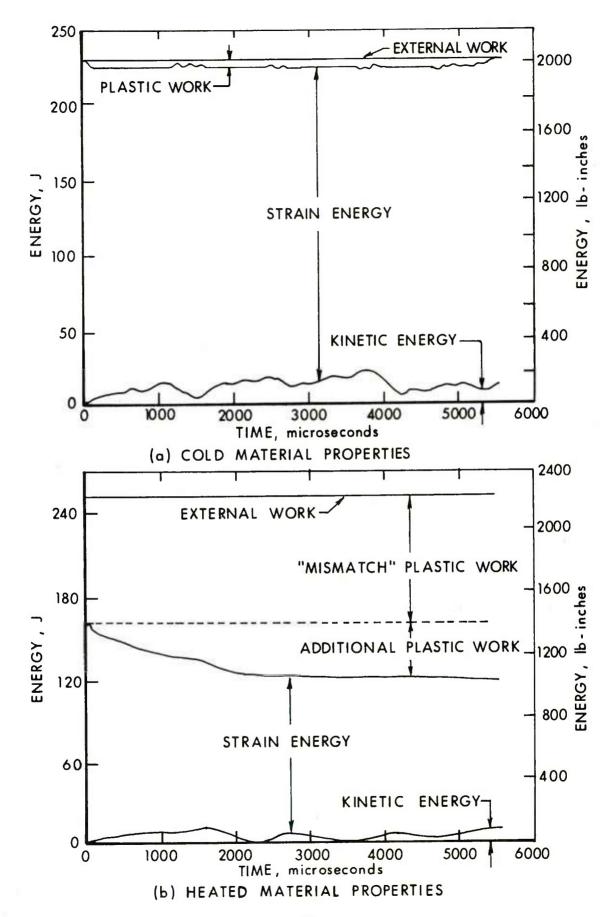



Figure 18. Surface Strain on the Top and Bottom Surface

interpreted as being composed of two parts, separated by the dashed line in Figure 19(b). Recalling that the initial stresses for the PETROS 3 analysis were obtained from the RIP solution at t_{RF} (which used cold material properties for stress evaluation), it is easy to see that the PETROS 3 analysis would entail large changes in stress during the first time step when thermally degraded properties are used. These essentially discontinuous stress changes entail a significant reduction in strain energy during the first cycle of PETROS 3 calculations and account for the area in Figure 19(b) labeled "mismatch" plastic work. This non-

energy during the first cycle of PETROS 3 calculations and account for the area in Figure 19(b) labeled "mismatch" plastic work. This non-physical discontinuous change could have been avoided if the RIP code had provision for using thermally degraded material strength properties. The additional plastic work associated with the structural response phase, using thermally weakened material characteristics is essentially complete by the termination of the solution. The increase in external work is due to the change in Poisson's ratio from cold to heated material properties.

It should be noted that the PETROS 3 calculations were performed using the temperature distribution of Figure 9 as though the temperature were invariant for the duration of the structural response prediction. A discussion of this point is presented in Appendix D.

V. CONCLUSION

The present work illustrates a procedure for predicting the structural response of target structures after intense, rapid heating due to x-ray radiation deposition. It is evident from comparing the solutions of the undegraded material properties and the degraded material properties that the results are significantly different. This indicates that precise modeling of structural response in rapid heating situations requires an accurate definition of degraded material properties under such conditions.

The methodology described is not limited to cases solved here. Other initial geometries with multilayer hard bonded material could be analyzed in a similar manner.

ACKNOWLEDGMENT

The author acknowledges Dr. Norris J. Huffington, Jr. and Dr. Joseph M. Santiago for their helpful advice and criticism, Mr. Fred Gregory for his assistance in obtaining RIP input data, Mr. Joseph Lacetera and Mrs. Janet Lacetera for their helpful discussions related to the RIP program, and Mr. Ennis F. Quigley for the results presented in Appendix D.

REFERENCES

- 1. R. H. Fisher, G. A. Lane, and R. A. Cecil, "RIP, A One-Dimensional Material Response Code User's Guide," Systems, Science and Software, Report 3SR-751-I, September 1972.
- 2. R. H. Fisher, G. A. Lane, and R. A. Cecil, "RIP, A One-Dimensional Material Response Code Code Reference Manual," Systems, Science and Software, Report 3SR-751-II, September 1972.
- 3. R. A. Kruger, "The Material Response Program, RIP," Systems, Science and Software, Report 3SR-120, December 1969.
- 4. RIP, A One-Dimensional Material Response Code. Systems, Science and Software, Contract No. SSS-R-72-1324.
- 5. S. Atluri, E. A. Witmer, J. W. Leech, and L. Marino, "PETROS 3: A Finite Difference Method and Program for the Calculation of Large Elastic-Plastic Dynamically Induced Deformations of Multilayer Variable Thickness Shells," U.S. Army Ballistic Research Laboratories, Contract Report No. 60, November 1971 (AD# 890200L).
- 6. J. M. Santiago, H. L. Wisniewski, N. J. Huffington, Jr., "A User's Manual for the REPSIL Code." U.S. Army Ballistic Research Laboratories, Report no. 1744, October 1974. (AD #A003176)
- 7. B. J. Kohn, "Compilation of Hugoniot Equations of State," Air Force Weapons Laboratory, April 1969 (page 19).
- 8. Sensitivity of Material Response Calculations to the Equation of State Model, Systems, Science and Software, Contract Report No. 130 (SSS-R-73-1910), December 1973 (page 24).
- 9. E. B. Royce, "Gray, A Three-Phase Equation of State for Metals," Lawrence Livermore Laboratory, Report UCRL-51121, September 1971 (page 38).
- 10. R. B. Oswald, Jr., F. B. McLean, D. R. Schallhorn, and T. R. Oldham, "The Dynamic Response of Aluminum to Pulsed Energy Deposition in the Melt-Dominated Regime," U.S. Harry Diamond Laboratories, HDL-TR-1624, July 1973 (page 11).
- 11. R. H. Fisher and J. W. Wiehe, "A User's Guide to the FSCATT Code," Systems, Science and Software, Report 3SR-318, November 1970.
- 12. R. H. Fisher and R. A. Kruger, "A Numerical Treatment of Scattering and Fluorescence in Plane Geometry," Systems, Science and Software, Report 3SR-119, September 1969.
- 13. Engineering Data for Aluminum Structures, The Aluminum Association, New York, N. Y., August 1969.

REFERENCES (Continued)

- 14. J. Lipkin, J. C. Swearengen, C. H. Karnes, "Mechanical Properties of 6061-T6 Aluminum after Very Rapid Heating," Sandia Laboratories Report SC-RR-72-0020, March 1972.
- 15. L. Morino, J. W. Leech and E. A. Witmer, "PETROS 2: A New Finite-Difference Method and Program for the Calculation of Large Elastic-Plastic Dynamically-Induced Deformations of General Thin Shells," BRL CR 12 (MIT-ASRL TR 152-1), December 1969. (In two parts: AD 708773 and AD 708774).
- 16. M. W. Coleman and J. V. Lanaham, "BRLESC FORTRAN Plotting Subroutines," Aberdeen Research and Development Center, Technical Report No. 6, June 1970.
- 17. J. D. Gask, "Chrysler Improved Numerical Differencing Analyser for Third Generation Computers," Chrysler Corporation Space Division, TN-AP-67-287, October 20, 1967.

APPENDIX A

CODING CHANGES TO RIP

Two types of changes to the RIP program listed in Reference 2 were needed in order to couple RIP and PETROS 3. The first change was designed to extract data to assist in interpreting the RIP output needed as PETROS 3 input. The second was to extract temperature from the Gray equations of state, and change the momentum editing flags to agree with the Gray equation of state editing flags, which determine within which region the calculation point lies.

A list is provided with a description of variables used in subroutine DAMP, PDATA, and PETINP. They are constructed to speed the process of determining the solution and provide additional output not contained in the normal RIP output format. Following this list is a brief explanation and FORTRAN listing of the subroutines. CHANGES TO THE RIP PROGRAM TO OBTAIN PLOTTING DATA FOR THE BRL RIP PLOTTING PROGRAM

- 1. FOLLOWING CARD RIP1270 ADD THE FOLLOWING IF(NRESRT .EQ. 0)CALL PDATA(1)
- 2. FOLLOWING CARD RIP1310 ADD THE FOLLOWING CALL PDATA(1)
- 3. FOLLOWING CARD RIP1370 ADD THE FOLLOWING STATEMENTS
 CALL EDIT
 CALL TDELT
- 4. FOLLOWING CARD RIP2190 ADD THE FOLLOWING STATEMENTS
 180 CALL PDATA(2)
 CALL EDIT
 CALL TDELT
 CALL PDATA(5)

REMOVE CARD RIP2200 WHICH STATES
180 CALL EDIT
5. FOLLOWING CARD EDI 950 ADD THE FOLLOWING
CALL PDATA(4)

6. FCLLOWING CARD EDI1410 ADD THE FCLLOWING CALL PETINP
IF(NSEDIT .EQ. 0)CALL PDATA(3)
CALL EXIT

REMOVE CARD EDI1420 WHICH STATES IF(NSEDIT .EQ. 0) CALL EXIT

CHANGES TO THE MOMENTUM EDITING FLAGS IN SUBROUTINE ENCALE

1. CODING WHICH FOLLOWS LINE TEMP(1)=TIME-DINP1

ENC 1440

ADD LINE GOTO (142,142,146,146),IEOS

AND CHANGE THE STATEMENT WHICH STATES
IF(E(J) .GE. ESTCON(10,N))MZONE(M,1)=J

ENC 1460

TO THE FOLLOWING

142 IF(E(J) .GE. ESTCON(10.N))MZONE(M.1)=J

2. CODING WHICH FOLLOWS LINE
IF(5(J) .GE. ESTCON(13,N))MZONE(M,4)=J

ENC1490

ACD LINES GOTC 150

FOR GRAY E.O.S. ONLY

146 IF(IVFLAG(J) .EQ. 35)MZONE(M,1)=J
 IF(IVFLAG(J) .EQ. 33)MZONE(M,2)=J
 IF(IVFLAG(J) .EQ. 32)MZONE(M,3)=J
 IF(IVFLAG(J) .EQ. 31)MZONE(M,4)=J

CHANGES FOR EXTRACTING TEMPERATURE FROM THE GRAY EQUATION OF STATE SUBROLTINE ECS3

1. COCING WHICH FOLLOWS LINE
U(100C).X(1C00).8LANK(39)

ESC 210

ADD LINE COMMON /ECSMAT/GTEMP(1000)

2. CCDING WHICH FOLLOWS LINE
 P(J)=TEM(4)*TEMP(5)-TEMP(7)*TEMP(9)*TEMP(10)
ACD LINE

ESC2190

TEMP(5)=TEMP(8)

3. CODING WHICH FOLLOWS LINE
 P(J)=1.E+12*P(J)
ACD LINE
 GTEMP(J)=TEMP(5)

ESC 2240

CHANGES FOR PRINTING TEMPERATURE IN SUBROUTINE MEDIT

1. CODING WHICH FOLLOWS LINE U(1000), X(1000), BLANK(39)

MDT 210

ACD LINE COMMON /EQSMAT/GTEMP(1000)

MDT 390 MDT 400

TO THE FOLLOWING

PRINT 130, J, SMASS, X(J), U(J), RHO(J), SD(J), S(J), P(J), E(J), GTEMP(J),

IVFLAG(J), IBFLAG(J), J

- 4. CHANGE FORMAT 140 TO THE FOLLOWING
 140 FORMAT(1H1,3X,1HJ,4X,5HSMASS,8X,1HX,10X,1HU,10X,3HRH0,7X,2HSD,9X,
 .1HS,11X,1HP,10X,1HE,10X,1HT,8X,2H[V,2X,2H]B,4X,1HJ/)

Subroutine PDATA, DAMP, and PETINP Local Variables

Name Definition

CMTOIN Constant to convert centimeters to inches.

CIN1 Kinetic energy of the vapor-liquid region.

CIN2 Kinetic energy of the liquid region.

CIN3 Kinetic energy of the liquid solid region.

CINET Total kinetic energy of all regions.

CINS(20) Kinetic energy of each solid piece KF, after spallation.

DCPSI Constant to convert dynes/cm² to psi.

DFACT Minimum average transverse stress used to control the termination of the problem during damping (Input card 4).

DSTOP(20) Control if DSTOP(I) = 1 solid piece has been damped, DSTOP(I) = 0 continue damping.

EERGY Internal energy plus kinetic energy for all regions.

GCTOLB Constant to convert g/cm^2 to $1b-sec^2/in.^4$.

GTEMP(J) Temperature of Zone J (K). J = 1, 1000

I Counter.

IFIRST Control variable governing mode of operations.

IFLAG Control variable (see description of variables in Appendix B).

J Counter.

JK Counter for indexing array JSS(JK).

JS Initial count used in DO statement in subroutine DAMP.

JSN Final count used in DO statement in subroutine DAMP.

KEY Control variable governing mode of operations.

KF Number of solid pieces after spallation.

KINET1(20) Kinetic energy at time $t - \Delta t$ for the KF solid piece.

KINET2(20) Kinetic energy at time t for each solid piece KF.

LINK Control number used in subroutine PDATA.

LMAXP Number of times at which profile plots are drawn (Input

card 2 needed for plotting).

LTP Control number.

NCOM(20) Control number to check if two solid pieces have recombined

after they had previously spalled.

NP. Number of time steps at which profile plots are drawn

(Input card 1 needed for plotting).

NPOLT Plotting tape unit number.

NT Counter.

NTIME(50) Time steps at which profile plots are obtained (Input card 1).

SMASS Sum of the masses in the solid region.

SUMKIN(20) Sum of kinetic energies of the solid region.

TANGS Tangential stress.

TDAMP Time at which damping starts (Input card 4).

TEMF Temperature in (°F).

THICK Thickness.

THICK1 Spatial coordinate of the first zone of the KF solid piece.

TPLOT(50) Times at which profile plots are obtained (Input card 3).

TRANS Average transverse stress.

VCEN(20) Array containing the velocity of the mass center of each

solid piece KF.

VCENT Same as VCEN(20).

VCENTR Velocity of the mass center of the first KF.

Explanation of Subroutines

PDATA Along with the RIP input data, Table I, the following input data is needed to obtain data on tape. Also this subroutine calculates and stores the data on tape required by the BRL-RIP plotting program. Appendix B describes and lists the program.

Input Data

Card	Variables	Format
1	NP, $(MTIME(I), I = 1, NP)$	1615
2	LMAXP	1615
3	(TPLOT(I), I = 1, LMAXP)	1615
4	TDAMP, DFACT	2E12.6

Description of Input

- Card 1 NP Number of time steps for which timewise plots of transverse stress, tangential stress, pressure and temperature are plotted.
 - NTIME(I) Time steps that transverse stress, tangential stress, pressure and temperature are plotted.
- Card 2 LMAXP Number of times for which timewise plots of transverse stress, tangential stress, pressure and temperature are plotted.
- Card 3 TPLOT(I) Times that transverse stress, tangential stress, pressure and temperature are plotted.
- Card 4 TDAMP Time at which damping starts. See Reference 9, page 59, for a more detailed explanation of TDAMP.
 - DFACT Minimum average transverse stress value used to control the termination of the problem during damping.
- DAMP As already mentioned in the Calculational Procedure, this subroutine is patterned on subroutine DAMP, Reference 6, page 46, except that no energy is dissipated by viscous damping, all the kinetic energy is reduced by the kinetic energy annihilation procedure. This procedure involves freezing the zone velocity of the material to the velocity of the mass center whenever the kinetic energy of the material reaches a maximum. Therefore, the vibratory kinetic energy of the material is made to vanish and the total kinetic energy reduced to the translational kinetic energy of the mass center. Then the material is released with

less energy. The above is repeated until the average transverse stress is less than DFACT. If spallation in the solid region takes place, each solid portion is damped separately.

PETINP At the termination of the run, this subroutine calculates and outputs the physical properties of the remaining solid portions of material (See Table A-1) which are needed by PETROS 3 as initial conditions.

Table A-1. RIP Output Summarizing the PETROS 3 Input

PETROS INPUT

SPALL FRAGMENT # 1 VELOCITY OF MASS CENTER # .324548E 02 KINETIC E # .346142E 04

		TRANSVERSE	TANGENTIAL	BULK	DENSITY	
J	X (INCHES)	STRESS (PS11	STRESS (PS1)	HODJLUS (PS1)		TEMPERATURE
5	.286972E-02	.356563E=01	171926E 05	.991661E 07	.243965E = 03	.884188E 03
6	.490975E=02	.177426E 01	- 181215E 05	. 101072E 08	.246288E-03	691115E 03
7	.693053E-02	.265635E 01	- 192885E 05	.101796E DA	.247166E-03	617691E 03
8	.894413E=02	.251745E 01	- 172411E 05	102030E 08	247454E-03	.589684E 03
9	109554E-01	.553275E 01	- 152215E 05	102100E 08	247541E-03	578963E 03
10	.129659E-01	.284710E 01	- 135297E 05	.102110E 08	•	•
11	149764E-01	767660E 01	- 143511E 05	.102132E 08	,247557E=03	.574988E 03
12	169866E-01	401311E 01	- 165841E D5	102165E 0A	.247618E-03	.574124E 03 .574453E 03
13	.189965E-01	.896145E 01	- 183026E 05	.102304E 08	.247784E-03	
14	210051E-01	549617E 01	196145E 05	.102540E 08		.562684E 03
15	.230114E-01	.103269E 02	-,206820E 05		,248068E=03	.539993E 03
16	250156E-01	.537024E 01		.102753E 08	.248324E-03	,51921 RE 03
17	270179E=01	.122974E 02	-,215400E 05 -,219507E 05	.102945E 08	.248556E-03	.500237E 03
18	.290186E-01	439690E 01		.103114E 08	,248760E=03	.482872E 03
19			218316E 05	.103261E OA	.248938E-03	.467040E 03
20	,310179E-01	.122163E 02	-,212850E 05	.1033A7E 05	.249092E-03	.452535E 03
21	.3301KNE-01	.591080E 01	-, 204535E 05	.10349AE 08	.249227E-03	.439272E 03
22	.350129E=01	.813348E 01	-,196071F 05	.103597E DB	.249349E-03	.427178E 03
23	.3700%9E=01 .390040E=01	.921013E 01	- 187914E 05	.103687E 08	.249458E-03	.415177E 03
24			- 180423E 05	.103770E 08	.249560E-03	.405956E 03
	.400983E=01	.109734E 02	173155E 05	.103849E DR	.249658E-03	.396133E 03
25	.429918E-01	.119581E 01	166274E 05	.103925E 08	.249750E-03	.386841E 03
26	.449846E-01	.114176E 02	-, 159608E 05	.103995E D8	.249836E-03	.378081E 03
27	.469766E-01	.534390E 00	- 153337E 05	.104062E 08	.24991AE-03	.36982RE 03
28	.489681E-01	.111907E 02	- 146965E D5	.104124E DR	.249994E-03	.362009E 03
29	.509589E-01	.200079E 01	141081E 05	.104183E OA	.250066E-03	.354613E 03
30	.529492E-01	.951144E 01	- 134817E 05	.104237E 08	.250133E=03	.347685E 03
31 .	5493A9E-01	.605653E 01	-,129195E 05	.104289E 08	.250196E-03	.341123E 03
32	.569281E-01	.586300E 01	- 123232E 05	.104337E 08	.250255E-03	.334895E 03
33	.589169E-01	.823557E 01	- 117596E 05	.104383E DA	.250312E-03	.328979E 03
34	.609052E-01	677231E 00	112336E 05	.104426E 08	.250365E-03	.323301E 03
35	.628930E-01	.100444E 02	- 107072E 05	.10446RE DR	.250417E-03	.317827E 03
36	.644805E-01	130240E D1	101850E 05	.104508E 08	.250466E-03	.312561E 03
37	.6686766-01	.787688E 01	- 968394E D4	.104547E 08	.250513E-03	.307532E 03
3.6	.680543E-01	234712E 01	- 928576E 04	104584E 08	250559E-03	302766E 03
39	.708406E-01	.754370E 01	- 886126E D4	.104620E 08	.250603E-03	.298153E 03
40	.728266E-01	.110207E 01	- 821242E 04	.104651E 08	250641E-03	.293688E 03
41	.74M123E-01	.21056AE 01	- 685124E 04	. 104670E 08	.250667E-03	.289297E 03
42	.767978E-01	.492710E 01	- 515550E 04	.104682E 08	.250684E-03	.285125E 03
43	.7A7831E-01	.111253E 01	- 351117E 04	.104693E 08	.250700E-03	.281117E 03
44	.807683E=01	.543446E 01	- 225231E 04	.104708E 08	.250720E-03	.277324E 03
45	.827534E-01	.304993E 00	- 888539E 03	.104720E 08	250737E-03	.273696E 03
46	.847383E-01	.920917E 01	643582E 03	.104728E 08	.250750E-03	.270155E 03
47	867231E=01	252626E-01	.211211E 04	.104736E DA	250762E-03	.2667598 03
48	887079E-01	.715619E 01	309914E 04	104751E 08	250782E-03	263457E 03
49	.906924E-01	.488688E 01	385713E 04	.104769E 08	.250805E-03	.260229E 03
50	926768E-01	.343853E 01	453886E 04	.104787E 08	250828E-03	.257092E 03
51	946610E-01	.611903E 01	527605E 04	.104803E OA	.250848E-03	.254064E 03
52	.966451E-01	.295806E 01	603215E 04	.104819E 08	.250868E-03	.251070E 03
53	986290E-01	.401802E 01	654949E 04	.104837E 08	.250892E-03	
54	.100613E 00	.373512E 01	707228E 04	.104855E 08	.250914E-03	.248153E 03
	\$	*2 61	*, Z	* 104020F 08	* 520 AT 45 = 02	.245300E 03

Table A-1. RIP Output Summarizing the PETROS 3 Input (Cont'd)

```
.102596E 00 '
                                            783912E 04
                                                              .104868E 08
5.5
                         .441249E 01
                                                                                .250931E-03
                                                                                                   .242594E 03
                                           887775E 04
979207E 04
       .104580E 00
                         .493887E 01
                                                              .104876E 08
                                                                                .250943E-03
56
                                                                                                   .239924E 03
       .196563E 00
                         .358567E 01
                                                              .104886E 08
57
                                                                                .250956E-03
                                                                                                   .237338E 03
                                           103625E 05
109417E 05
114404E 05
58
       .108546E 00
                         .469519E 01
                                                              .104899E 08
                                                                                ,250973E-03
                                                                                                   .2348B0E 03
       .110529E 00
.112512E 00
                         .434038E 01
                                                              .104912E 08
                                                                                250990F-03
251007E-03
                                                                                                  .232477E 03
60
                                           119429E 05
                                                              .10493RE OR
                                                                                .251023E-03
       .114495E 00
                         .57030AE 01
                                                                                                   .227916E 03
                                           123785E 05
                                                              .104952E 08
                                                                                                   .225715E 03
62
       .116478E 00
                         .184327E 01
                                                                                .251040E-03
       .118460E 00
63
                         .715614E 01
                                           127665E 05
                                                              .104965E 08
                                                                                .251057E-03
                                                                                                  .223573E 03
       .120442E 00
                                            131690E 05
64
                                                              .104978E 08
                        -.153186E 01
                                                                                .251073E-03
                                                                                                  .221453E 03
                                            .134934E 05
65
       .122425E 00
                         .894621E 01
                                                                                                   .219399E 03
                                                              .104997E OR
                                                                                .251090E-03
                                            .138159E 05
       .124407E 00
                                                              .105005E 08
66
                         .268836E 01
                                                                                .251106E-03
                                                                                                   .217413E 03
       .126389E 00
.128371E 00
                                           141176E 05
145416E 05
                         .218212E 01
.535449E 01
                                                              .105018E 08
.105029E 08
67
                                                                                .251123E-03
.251137E-03
                                                                                                  .215465E 03
68
                                                                                                  .213551E 03
       .130353E 00
.132334E 00
.134316E 00
                                           148743E 05
152942E 05
156750E 05
69
                         .150429E 00
                                                              .105040E 08
                                                                                .251151E-03
                                                                                                  .211702E 03
70
                        .152686E 01
-.134739E 01
                                                              .105051E OR
                                                                                .251164E-03
                                                                                                   .209864E 03
71
                                                              .105061E OR
                                                                                .251177E-03
                                                                                                  .208097E 03
                                           160904E 05
       .136297E 00
                                                              .105070E 08
72
                         .924900E nn
                                                                                .251189E-03
                                                                                                   .206367E 03
                                            164679E 05
                                                              .1050ADE 08
73
       .138279E 00
                        -,451444E 01
                                                                                                  .204649E 03
                                                                                .251201E-03
                                           168383E 05
172018E 05
       .140260E 00
.142241E 00
                        -.134501E 01
-.598995E 01
                                                              .105089E 08
74
                                                                                .251213E-03
                                                                                                  .202986E 03
.201347E 03
                                                                                .251225E-03
                                                              .105107E 08
.105110E 08
.10510RE 08
76
                        -. 427209E 01
       .144222E 00
                                            176165E 05
                                                                                .251236E-03
                                                                                                  .199720E 03
       .145203E 00
.145184E 00
                                           183667E 05
194157E 05
                                                                                                  196495E 03
                        -.602355E 01
-.487372E 01
                                                                                .251241E-03
.251241E-03
78
       .150165E 00
79 .
                        -.117142E 01
                                            210965E 05
                                                              .105097E 08
                                                                                .251230E-03
                                                                                                  .194846E 03
       .152146E 00
                                            .228442E 05
8.0
                        -. 168747E 01
                                                              .105085E 08
                                                                                .251218E-03
                                                                                                  .193253E 03
                                           247503E 05
                                                              .105070E 08
81
       .154127E 00
                       -,596695E 01
                                                                                .251204E-03
                                                                                                  .191624E 03
                                           258183E 05
82
       .15610AE 00
                        -. 267724E 01
                                                              .105066E 08
                                                                                .251201E-03
                                                                                                  .190243E 03
                                           262409E 05
240765E 05
                        -.171632E 01
-.147680E 01
       .158090E 00
                                                              .105071E 08
                                                                                .251207E-03
                                                                                                  .189013E 03
       .160071E 00
                                                                                                  .188318E 03
                                                                                .251251E-03
                                                              .105163E 08
85
       .162052E 00
                                           207359E 05
                        -. 305337E 01
                                                                                .251309E-03
                                                                                                  .188219E 03
86
       .164032E 00
                                                              .105185E 08
                         .453725E 00
                                            .149112E 05
                                                                                . 251326E-03
                                                                                                  .195727E 03
```

SPALL FRAGMENT # 2

THICKNESS . 161162E 00

VELOCITY OF HASS CENTER . 287187E 03 KINETIC E . 359703E 04

```
J X 114CHES) TRANSVERSE TANGENTIAL BULK OF WS1TY TEMPFRATURE 88 .166515E 00 .930598E 01 .744571E 04 .105170E 08 .251295E-03 .2100A0E 03
```

SPALL FRAGMENT = 3
VELOCITY OF MASS CENTER = .748007E 03 KINETIC E = .366031E 06

TH1CKNESS = .502340E-03

	X 114CHES1	TRANSVERSE	TANGENTIAL	BULK	DENSITY	
•	W ITACHES!	STRESS (PS1)	STRESS 1PS11	HOOULUS 1PS11		TEMPERATURE
90	.171106E 00	#32781E 00	323876E 05	.105034E OR	.251174E-03	.182547E 03
91	,173088E 00	678475E 01	248078E 05	.105169E 08	.251323E-03	.180676E 03
92	.17506AE 00	.257191E 00	215518E 05	.105237E 08	.251400E-03	.178719E 03
93	.17704RE 00	.395986E 01	.162181E 05	.105331E 08	.251504E-03	.177430E 03
94	.179027E 0n	403212E 01	128974E 05	.105391E 08	.251572E-03	.176400E 03
95	.181005E 00	./44244E 01	124577E 05	.105411E 08	.251594E-03	.175089E 03
96	.182983E 00	.269280E 01	.130922E 05	.105412E OR	.251597E-03	173811E 03
97	.184961E 00	417995E 01	116058E 05	.105446E 08	.251635E-03	.172566E 03
9.8	.186939E 00	,602417E 01	865734E 04	.105502E 08	.251697E-03	.171459E 03
99	.188916E 00	.157618E 01	526292E 04	.105564E 08	.251766E-03	.170363E 03
100	.190595E 00	232862E 01	245225E 04	.105615E 08	.251823E-03	.169512E 03
1 11	192870E 00	-,242114E 01	- 512376E 04	.105735E 08	.251954E-03	.169182E 03
102	.194845E 00	260199E 01	- 597628E 04	.105759E 08	.251983E-03	.167859E 03
103	.196820E 00	505322E 00	1653n0E 05	.105924E 08	.252164E-03	.167546E 03
104	.198794E 00	308957E 01	- 193012E 05	.105974E 08	.252219E-03	.166773E 03

TH1CKNESS = :276875E-01

```
SUBROUTINE POATA (LINK)
                                                                           ***
       DIMENSION TPLOT(50)
                                                                           PDAT
                                                                                  2
       COMMON (USE MAIN)
                                                                           PDAT
                                                                                  3
       COMMON /PDAMP/ NTIME(50), KINET1(20), KINET2(20), SUMKIN(20).
                                                                           PDAT
                                                                                   4
      1CINS(20), JSS(40), DSTOP(20), NP, TDAMP, DFACT, KF, VCEN(20), NCOM(20)
                                                                           PDAT
                                                                                  5
       COMMON /EOSMAT/ GTEMP(1000)
                                                                           PDAT
                                                                                  6
       REAL KINET1, KINET2
                                                                           PDAT
                                                                                  7
       DATA LTP/0/
                                                                           PDAT
                                                                                  A
C
                                                                           PDAT
                                                                                  9
       GOTO (10,20,50,60,500),LINK
                                                                           PDAT
                                                                                 10
    10 READ(5,100) NP, (NTIME(I), I=1,NP)
                                                                           PDAT
                                                                                 11
      READ (5,100) LMAXP
                                                                           PDAT
                                                                                 12
       READ (5,160) (TPLOT(I), I=1, LMAXP)
                                                                           PDAT
                                                                                 13
       NT=1
                                                                           PDAT
                                                                                 14
       WRITE(6,110) (NTIME(I), I=1,NP)
                                                                           PDAT
                                                                                 15
       WRITE(6,150) (TPLOT(I), I=1, LMAXP)
                                                                           PDAT
                                                                                 16
       READ (5,120) TDAMP, DFACT
                                                                           PDAT
                                                                                 17
       WRITE (6,130) TDAMP. DFACT
                                                                           PDAT
                                                                                 18
      NP = 1
                                                                           PDAT
                                                                                 19
      KMAX=0
                                                                           PDAT
                                                                                 20
       DO 11 I=1.20
                                                                           PDAT
                                                                                 21
       DS TOP ( I ) = 0.0
                                                                           PDAT
                                                                                 22
      KINET1(I)=0.0
                                                                           PDAT
                                                                                 23
      KINET2(I)=0.0
                                                                           PDAT
                                                                                 24
   11 SUMKIN(I)=0.0
                                                                           PDAT.
                                                                                 25
      NPLOT=3
                                                                           PDAT
                                                                                 26
. C
                                                                           PDAT
                                                                                 27
       IF(NCYCLE .LE. 1)GOTO 45
                                                                           PDAT
                                                                                 28
   12 CALL SKIPFILE (NPLOT, 1)
                                                                           PDAT
                                                                                 29
      READ (NPLOT) IFLAG
                                                                           PDAT
                                                                                 30
       IF(IFLAG .EQ. 99999)GOTO 14
                                                                           PDAT
                                                                                 31
      READ (NPLOT) IFLAG
                                                                           PDAT
                                                                                 32
       IF(IFLAG .NE. NCYCLE)GOTO 12
                                                                           PDAT
                                                                                 33
    14 CALL BACKFILE (NPLOT, 1)
                                                                           PDAT
                                                                                 34
      GOTO 60
                                                                           PDAT
                                                                                 35
C
                                                                           PDAT
                                                                                 36
   20 CIN1=0.0
                                                                           PDAT
                                                                                 37
      CIN2=0.0
                                                                           POAT
                                                                                 38
      CIN3=0.0
                                                                          PDAT
                                                                                 39
      CIN4=0.0
                                                                          PDAT
                                                                                 40
C
      41
      DO 25 I=1.20
                                                                          PDAT
                                                                                 42
      NCOM(I)=0
                                                                          PDAT
                                                                                 43
   25 CONTINUE
                                                                          PDAT
                                                                                 44
C
                                                                          PDAT
                                                                                 45
      KF=1
                                                                          PDAT
                                                                                 46
      JK = 1
                                                                          PDAT
                                                                                 47
      IFIRST=0
                                                                          PDAT
                                                                                 48
      CINS(1)=0.0
                                                                          PDAT
                                                                                 49
      VCEN(1)=0.0
                                                                          PDAT
                                                                                 50
      SMASS=0.0
                                                                          PDAT
                                                                                 51
      KEY=1
                                                                          PDAT
                                                                                 52
C
                                                                          PDAT
                                                                                 53
      DO 35 J=1.MAXZ
                                                                                 54
                                                                          PDAT
      IF(IVFLAG(J) .EQ. 0)GOTO 35
                                                                          PDAT
                                                                                 55
C
                    HOT LIQUID REGION (VAPER-LIQUID)
                                                                          PDAT
                                                                                 56
      IF(IVFLAG(J) .EQ. 33) CIN1=CIN1+.125*DELTAM(J)*(U(J)+U(J+1))**2
                                                                          PDAT
                                                                                 57
C
                    LIQUID REGION
                                                                          PDAT
                                                                                 58
      IF(IVFLAG(J) .EQ. 32) CIN2=CIN2+.125*DELTAM(J)*(U(J)+U(J+1))**2
                                                                          PDAT
                                                                                 59
C
                   MELT REGION (LIQUID SULID)
                                                                          PDAT
                                                                                 60
```

```
IF(IVFLAG(J) .EQ. 31) CIN3=CIN3+.125*DELTAM(J)*(U(J)+U(J+1))**2
IF(IVFLAG(J) .NE. 30)GOTO 35
                                                                                PDAT
                                                                                      61
                                                                                PDAT
                                                                                PDAT
       IF(IFIRST .EQ. 0) JSS(JK)=J
                                                                                      63
                                                                                PDAT
                                                                                      64
       IFIRST=1
          COMPUTE KINETIC ENERGY OF EACH SOLID PIECE (FRAGMENT)
                                                                                PDAT
                                                                                      65
C
          VELOCITY OF MASS CENTER OF EACH FRAGMENT
                                                                                PDAT
                                                                                      66
C
                                                                                PDAT
                                                                                      67
      CINS(KF)=CINS(KF)+.125*DELTAM(J)*(U(J)+U(J+1))**2
                                                                                PDAT
                                                                                      68
       SMASS=SMASS+DELTAM(J)
                                                                                PDAT
                                                                                      69
      VCEN(KF) = VCEN(KF) +. 5 + 0 EL TAM(J) + (U(J) + U(J+1))
                                                                                PDAT
                        ANY ZONE COMBINE
                                                                                       70
C
                                                                                PDAT
                                                                                      71
       IF(IBFLAG(J) .NE. 4)GOTO 28
                                                                                PDAT
                                                                                      72
      NCOM(KF+1)=1
                                                                                PDAT
                                                                                      73
       JSS(JK+1)=J
                                                                                PDAT
                                                                                      74
       IK = IK +2
                                                                                PDAT
                                                                                      75
       IF IRST=0
                                                                                PDAT
                                                                                      76
       GOTO 35
                                                                                PDAT
                                                                                      77
C
   28 IF (IBFLAG(J) .EQ. 2 )KEY=2
                                                                                PDAT
                                                                                      78
                                                                                PDAT
                                                                                      79
       GOTO (35,30),KEY
   30 VCEN(KF)=VCEN(KF)/SMASS
                                                                                PDAT
                                                                                      80
                                                                                PDAT
       IF(NCOM(KF+1) .EQ. 0)GOTO 31
                                                                                      81
                                                                                PDAT
                                                                                      82
       KF=KF+1
                                                                                PDAT
                                                                                       83
       VCEN(KF)=0.0
   31 JSS(JK+1)=J
                                                                                PDAT
                                                                                      84
                                                                                PDAT
                                                                                      85
       JK = JK + 2
                                                                                PDAT
                                                                                      86
       KF=KF+1
       KEY=1
                                                                                PDAT
                                                                                      87
       IF(KF .GT. 20) GOTO 70
                                                                                POAT
                                                                                       88
                                                                                PDAT
                                                                                      RO
       CINS(KF)=0.0
                                                                                POAT
                                                                                      90
       VCEN(KF)=0.0
                                                                                POAT
                                                                                      91
       SMASS=G.O
       IFIRST=0
                                                                                POAT
                                                                                      92
                                                                                POAT
                                                                                      93
    35 CONTINUE
       VCEN(KF)=VCEN(KF)/SMASS
                                                                                PDAT
                                                                                       94
                                                                                PDAT
                                                                                      95
       JSS(JK+1)=MAXZ
                                                                                      96
          SUM KINETIC ENERGY FOR KF FRAGMENTS
                                                                                PDAT
C
                                                                                PDAT
                                                                                      97
       VCENTR=VCEN(1)
                                                                                PDAT
                                                                                       98
       CIN4=0.
       DO 38 J=1.KF
                                                                                PDAT
                                                                                      99
                                                                                PDAT 100
       CIN4=CIN4+CINS(J)
                                                                                PDAT 101
    38 CONTINUE
                                                                                PDAT 102
C.
                                                                                PDAT 103
       CINLS=CIN4
                                                                                PDAT 104
       CINL=CIN4+CIN3
                                                                                PDAT
                                                                                     105
       CINVL=CIN4+CIN3+CIN2
                                                                                PDAT 106
       CINV=CIN4+CIN3+CIN2+CIN1
                                                                                PDAT 107
C
                                                                                PDAT 108
       IFI AG=1
                                                                                PDAT 109
       WRITE(NPLOT) IFLAG
                                                                                PDAT 110
       WRITE(NPLOT) NCYCLE, TIME, VCENTR, KF, (CINS(I), I=1, KF)
                                                                                POAT 111
C.
                                                                                PDAT 112
       KMAX=MAXO(KMAX.KF)
                                                                                PDAT 113
       KF=KMAX
                                                                                PDAT 114
       CALL DAMP
C
                                                                                PDAT 115
                                                                                PDAT 116
    44 IF (NCYCLE .NE. NTIME(NP))GOTO 45
       NP = NP + 1
                                                                                PDAT 117
                                                                                PDAT 118
       IFLAG=2
                                                                                PDAT -119
       WRITE(NPLOT) IFLAG
       WRITE(NPLOT) TIME, MAXZ, (X(J), S(J), P(J), SD(J), GTEMP(J), IVFLAG(J), PDAT 120
```

		1J=1,MAXZ)	PDAT	
C	40	RETURN	PDAT	
C	60	IFL 4G=99999	PDAT	
	50	WRITE(NPLOT) IFLAG	PDAT	
		GOTO 45	PDAT	
С		6010 45	PDAT	
C	40	END FILE NPLOT	PDAT	
	80	GOTO 44	PDAT	
	70	WRITE(6.140) KF.NCYCLE	POAT	
	70	IFLAG=99999	PDAT	
		WRITE(NPOLT) 1FLAG	PDAT	
		CALL FORTRAN	PDAT	
С		CALL FUNTRAN	PDAT	
C	500	IF(LTP .EQ. 0)GOTO 510	PDAT	
	,,,,	LTP=0	PDAT	
		IFLAG=2	PDAT	
		TIME=TIME-DTNP1	PDAT	
		WRITE(NPLOT) IFLAG	PDAT	
		WRITE(NPLOT) TIME.MAXZ.(X(J).S(J).P(J).SD(J).GTEMP(J).IVFLAG(J).	PDAT	
	1	LJ=1.MAXZ)	PDAT	
		TIME=TIME+DTNP1	PDAT	
		GOTO 45	PDAT	
C		5010 43	PDAT	
•		IF(NT .GT. LMAXP)GOTO 45	PDAT	_
		IF(TIME .LT. TPLOT(NT))GOTO 45	PDAT	
		DTNP1=TIME-TPLOT(NT)	POAT	_
		TIME=TIME-DTNP1	PDAT	_
		LTP=1	PDAT	149
		NT=NT+1	PDAT	150
		GO TO 45	PDAT	151
С			PDAT	152
	100	FORMAT(16[5)	PDAT	153
	110	FORMAT(5x,33HPLOTS AT THE FOLLOWING TIME STEPS/(5x,(1615)))	PDAT	154
	120	FORMAT (2E12.6)	PDAT	155
	130	FORMAT (25H START DAMPING AFTER TIME, E12.6, 5x, 7HDFACT =, E12.6)	PDAT	156
	140	FORMAT(* ENLARGE ARRAY CINS K= *,15, * TIME STEP = *,15)	PDAT	157
	150	FORMAT(5X,23HPLOTS AT FOLLOWING TIME/5X,(5E15.7))	PDAT	158
	160	FORMAT(5E15.7)	PDAT	159
		END	PDAT	160

```
SUBROUTINE DAMP
                                                                              #***
DAMP
      COMMON (USE MAIN)
      COMMON /PDAMP/ NTIME(50), KINET1(20), KINET2(20), SUMKIN(20),
                                                                              DAMP
                                                                                      3
     1CINS(20).JSS(40).DSTOP(20).NP.TDAMP.DFACT.KF.VCEN(20).NCOM(20)
                                                                              DAMP
                                                                                      4
                                                                              DAMP
      REAL KINET1, KINET2
                                                                              DAMP
                                                                                      6
      DATA DCPSI/. GGOO145/
                                                                              DAMP
                                                                                      7
C
                                                                              DAMP
      DO 5 I=1.KF
                                                                                      Я
                                                                              DAMP
      IF (NCOM(I) . EQ. 1)KINET2(I)=0.0
                                                                              DAMP
                                                                                     10
      KINET1(I)=WINET2(I)
                                                                              DAMP
                                                                                     11
      IF(NCOM(I) .EQ. 1)CINS(I)=0.0
                                                                              DAMP
                                                                                     12
      KINET2(I)=CINS(I)
                                                                              DAMP
                                                                                     13
    5 CONTINUE
         CHECK FOR START OF DAMPING
                                                                              DAMP
C
                                                                              DAMP
                                                                                     15
       IF (TIME .LT. TDAMP) RETURN
                                                                              DAMP
C
                                                                                     16
      IF(KF .LT. 2)G0T0 12
                                                                              DAMP
                                                                                     17
      DO 10 I=2,KF
                                                                              DAMP
                                                                                     18
       IF (NCOM(I) .EQ. 1) VCEN(I) = 0.0
                                                                              DAMP
                                                                                     19
       IF(VCEN(I).EQ. 0.0)GOTO 10
                                                                              DAMP
                                                                                     20
      IF(VCEN(I-1) .GT. VCEN(I)) RETURN
                                                                              DAMP
                                                                                     21
                                                                              DAMP
   10 CONTINUE
                                                                                     22
                                                                              DAMP
                                                                                     23
   12 KFINAL=1
                                                                              DAMP
       JK = 1
                                                                              DAMP
                                                                                     25
                                                                              DAMP
      DO 30 I=1,KF
                                                                                     26
       IF(NCOM(I) .EQ. 1)GOTO 27
                                                                              DAMP
                                                                                     27
                                                                              DAMP
       IF(DSTOP(I).NE. 0.0)GOTO 53
       IF(KINET2(1) .GT. KINET1(I))GOTO 27
                                                                              DAMP
                                                                                     29
                                                                              DAMP
     SUMKIN(I)=SUMKIN(I)+CINS(I)
                                                                                     30
                                                                              DAMP
                                                                                     31
       JS=JSS(JK)
                                                                              DAMP
       JSN=JSS(JK+1)
                                                                                     32
       IF(JS .EQ. JSN)GOTO 53
                                                                              DAMP
                                                                                     33
                                                                              DAMP
                                                                                     34
       TRANS=0.0
       DO 52 J=JS, JSN
                                                                              DAMP
                                                                                     35
       TRANS=TRANS+ABS(S(J))
                                                                              DAMP
   52 CONTINUE
                                                                              DAMP
                                                                                     37
                                                                              DAMP
       TRANS=TRANS/FLOAT(JSN-JS+1)
                                                                                     38
       TRANS=TRANS*CCPSI
                                                                              DAMP
                                                                                     39
       IF(TRANS .LE. DFACT)GOTO 53
                                                                              DAMP
                                                                                     40
           COMPUTE MOMENTUM OF FRAGMENT
C
                                                                              DAMP
                                                                                     41
       JS=JSS(JK)
                                                                              DAMP
                                                                                     42
       JSN=JSS(JK+1)
                                                                              DAMP
                                                                                     43
                                                                              DAMP
       IF(NCOM(I+1) .NE. 0) JSN=JS9(JK+3)
                                                                                     44
                                                                              DAMP
                                                                                     45
       DO 25 J=JS, JSN
       U(J)=VCEN(I)
                                                                              DAMP
                                                                                     46
                                                                              DAMP
   25 CONTINUE
                                                                                     47
       U(JSN+1) = VCEN(I)
                                                                              DAMP
                                                                                     48
   27 JK=JK+2
                                                                              DAMP
   30 CONTINUE
                                                                              DAMP
                                                                                     50
                                                                              DAMP
       RETURN
                                                                                     51
C
                                                                              DAMP
                                                                                     52
   53 DSTOP(I)=1.0
                                                                              DAMP
                                                                                     53
       IF (KFINAL .GE. KF) GOTO 55
                                                                              DAMP
                                                                                     54
       KFINAL=KFINAL+1
                                                                              DAMP
                                                                                     55
       GOTO 27
                                                                              DAMP
                                                                                     56
C
                                                                              DAMP
                                                                                     57
    55 WRITE(6,100) NCYCLE
                                                                              DAMP
                                                                                     58
       MAXCYL=NCYCLE
                                                                              DAMP
                                                                                     59
       TMAX=TIME
                                                                              DAMP
                                                                                     60
```

•		NTIME(NP)=NCYCLE CALL EDIT		,		BAMP	61
C						DAMP	63
	100	FORMAT(1H1,10X,29HRUN	SELF-TERMINATED	TIME	STEP, 15)	DAMP	64
		END				DAMP	65

```
SUPRCUTINE PETINP
                                                                               ***
C
                               PETROS-3 INPUT
                                                                               PETI
      COMMON (USE MAIN)
                                                                               PETI
      COMMON /PCAMP/ NTIME(50) . KINET1(20) . KINET2(20) . SUMKIN(20) .
                                                                               PETI
     ICINS(20), JSS(40), DSTOP(201, NP, TDAMP, DFACT, KF, VCEN(20), NCOM(2D)
                                                                               PETE
      COMMON /ECSMAT/ GTEMP(1000)
                                                                               PETI
      CATA DCPSI/.CCCC145/CMTOIN/.3937/GCTOLB/.93502E-04/
                                                                               PETI
                                                                                       7
C
                                                                               PETI
                                                                                       8
      WRITE (6,100)
                                                                               PETI
                                                                                       Ç
      JK = 1
                                                                               PETI
                                                                                      10
      CO 30 I=1,KF
                                                                               PETI
                                                                                      11
      J3=JSS(JK)
                                                                               PET
                                                                                      12
      JSN=JSS(JK+I)
                                                                               PETI
                                                                                      13
      VCENT=VCEN(I) + CMTCIN
                                                                               PETI
                                                                                     14
      WRITE(6,110) I, VCENT, CINS(I)
                                                                               PETI
                                                                                     15
      WRITE(6, 130)
                                                                               PETI
                                                                                     16
      IFIRST=1
                                                                               PETI
                                                                                     17
      CO 20 J=JS, JSN
                                                                               PETI
                                                                                     18
      TRANS=S(J)+CCPSI
                                                                               PETI
                                                                                     19
      TANGS =- (P(J)-0.5 + SD(J)) + DCPSI
                                                                               PETI
                                                                                     20
      TEMX=X(J)+CMTOIN
                                                                               PETI
                                                                                     21
      BMS=(RHO(J)+C(J)++2)+DCPSI
                                                                               PETI
                                                                                     22
      RHCP=RHO(J)+GCTCLB
                                                                               PETI
                                                                                     23
      TEMF=32.C+(1.8*(GTEMP(J)-273.165))
                                                                               PET
      WRITE(6,140) J, TEMX, TRANS, TANGS, BMS, RHOP, TEMF
                                                                              PETI
                                                                                     25
      IF(IFIRST .EQ. 1) THICK1=X(J)
                                                                               PETI
                                                                                     26
      IFIRST=0
                                                                              PETI
                                                                                     27
      THICK=(X(J)-THICK1)+CMTOIN
                                                                              PETE
                                                                                     28
   20 - CONTINUE
                                                                               PETI
                                                                                     29
      JK = JK + 2
                                                                              PETI
                                                                                     3 C
      IF(JS .EQ. JSN) THICK=(X(JS)-X(JS-1)) +CMTOIN
                                                                               PETI
                                                                                     31
      WRITE(6,150) THICK
                                                                              PETI
                                                                                     32
   30 CONTINUE
                                                                              PETI
                                                                                     33
      RETURN
                                                                              PETI
                                                                              PETI
                                                                                     35
  1CO FORMAT(1H1,59X,12HPETROS [NPUT/)
                                                                              PETI
                                                                                     36
  110 FORMAT(//55X,16HSPALL FRAGMENT =,13/
                                                                              PETI
                                                                                     37
     I35X, 25HVELCCITY OF MASS CENTER =, E12.6, 1X, 11HKINETIC E =E12.6/)
                                                                              PETI
                                                                                     38
  130 FORMAT(/5CX, 10HTRANSVERSE, 5X, 10HTANGENTIAL, 8X, 4HEULK, 10X, 7HCENSITYPETI
                                                                                     39
     1/3CX, 1HJ, 4X, 10HX (INCHES), 4X, 12HSTRESS (PSI), 3X, 12HSTRESS (PSI), 3XPETI
                                                                                     4 C
     2,13HMODULUS (PSI),19X,11HTEMPERATURE)
                                                                              PETI
                                                                                     41
  140 FORMAT(28x,13,6(3x,E12.6))
                                                                              PETI
                                                                                     42
  150 FORMAT(/53X,11HTHICKNESS =,E12.6)
                                                                              PETI
                                                                                     43
      ENC
                                                                              PETE
                                                                                     44
```

APPENDIX B

BRL-RIP PLOTTING PROGRAM

The BRL-RIP plotting program is independent of the RIP program. It was written to monitor, by plotting, the output needed in coupling RIP to PETROS 3. The program makes use of the BRLESC FORTRAN Plotting Subroutines 16 which can easily be adapted to any other plotting system.

DESCRIPTION OF MAIN PROGRAM AND SUBROUTINES

The main program reads the plotting data tape and controls the flow of information. If the variable IFLAG equals one, data is read and stored in the plotting data arrays. If it equals two, data is read, converted to proper units and tangential stress is computed, then the program calls subroutine TPLOT. When IFLAG equals 99999, the program calls subroutine GRAPH.

If the number of cycles is greater than MAXA, subroutine GRAPH is called. If more cycles are needed, the following data arrays must be enlarged: TIM(MAXA), E(MAXA), VCEN(MAXA), and PKINE(N), where subscript N is equal to 20 times MAXA.

Subroutine TPLOT plots the profiles through the thickness, for the transverse stress, pressure, tangential stress and temperature. See Figures 6, 7, 8, and 9 for examples of the plotted output.

Subroutine GRAPH produces two graphs. The first is the kinetic energy versus time, which is useful for monitoring the solution, for the purpose of determining when to start damping and when to terminate the run. The second is the velocity of the mass center versus time. See Figures 10 and 11 for examples of the plotted output.

Subroutine PLOTD will plot data (drawline) for every zone in the mesh, but will skip any spall zone.

¹⁶ M. W. Coleman and J. V. Lanaham, BRLESC FORTRAN Plotting Subroutines," Aberdeen Research and Development Center, Technical Report No. 6, June 1970.

Description of Variables

	bescription of variables
Name	Definition
B(1000)	Array used by the BRLESC FORTRAN Plotting Subroutines.
CINS (100	The array of numbers, corresponding to the kinetic energy of each fragment for a given time step.
DCPSI	Conversion constant (dynes/cm ² to psi).
DX, DY	Spacing between increments in the X and Y directions used in labeling the axis.
GTEMP(10	O00) Array of numbers corresponding to temperature profile through the thickness.
I	Index counter.
IFLAG	A flag. When it equals 1, program will read data for the timewise plots. When it equals 2, the program will read data for transverse stress, pressure, tangential stress, and temperature plots. When it equals 99999, the program will plot the timewise plots.
IVFLAG	See Reference 1, page 507.
J	Index counter.
KS	Number of spall fragments in the solid region.
LINK	Index used by a computed GOTO statement.
MAXA	Size of plotting arrays.
MAXJ	Number of zones (See Reference 1, page 507).
MJ	Index counter for number of cycles.
N	Index counter equal to the maximum MJ's.
NCYCLE	Counter on the number of cycles (see Reference 1, page 506)
NPLOT	Magnetic plotting tape input unit number.

Array of numbers corresponding to pressure profile through

the thickness.

PJ(1000)

R. H. Fisher, G. A. Lane and R. A. Cecil, "RIP, A One-Dimensional Material Response Code - User's Guide," Systems, Science and Software, Report 3SR-751-I, September 1972.

PKINE(20000) The array of numbers, corresponding to kinetic energy of the fragments in the solid region.

SDJ(1000) The array of numbers, corresponding to stress deviator through the thickness.

SJ(1000) The array of numbers, corresponding to stress through the thickness.

STEP(2) Array corresponding to label of current time.

SYM_i i = 1, 5 Arrays corresponding to labels on the axes.

TEMP Temporary name.

TIM(1000) The array of numbers, corresponding to time history.

TIME Current value of time.

VCEN(1000) The array of numbers, corresponding to the velocity of mass center of the largest remaining solid region.

XBAR, YBAR Board coordinates of a point on the plotting surface.

XJ(1000) The array of numbers, corresponding to the spatial coordinates.

XL Length of x-axis in inches.

XMAX Maximum x-coordinate.

XMIN Minimum x-coordinate.

XPAGE Plotting page length.

XS, YS Scales in the X and Y directions.

XSCALE Scale in the X direction.

 X_1 , X_2 Plotting arrays for the X and Y directions.

```
C
          BRL-RIP PLOTTING PROGRAM (BRLESC FORTRAN PLOTTING SUBROUTINES) MAIN
      COMMON TIM(1000), GTEMP(1000), IVFLAG(1000), VCEN(1000),
                                                                               MAIN
                                                                                       2
     1XJ(1000), SJ(1000), PJ(1000), SDJ(1000), MAXZ, MJ, NCYCLE, TIME
                                                                               MAIN
                                                                                      3
      COMMON KS, MAXA, CINS(20), PKINE(20000)
                                                                               MAIN
                                                                               MAIN
      DATA DCPSI/.CC00145/
                                                                                       5
          MVPRTO(01K00)
                                                                               MAIN
                                                                                       6
          SUBR(PLTCCB=01400)
                                                                               MAIN
                                                                                       7
C
                                                                               MAIN
                                                                                       8
      NPLOT=3
                                                                               MAIN
                                                                                       9
      REWIND NPLOT
                                                                               MAIN
                                                                                     10
      MJ = 0
                                                                               MAIN
                                                                                     11
      MAXA=1000
                                                                               MAIN
                                                                                     12
                                                                               MAIN
   10 READ(NPLOT) IFLAG
                                                                                     13
      IF( IFLAG . EQ. 59999) GOTO 40
                                                                               MAIN
                                                                                     14
      GOTO(20,25), IFLAG
                                                                               MAIN
                                                                                      15
С
                                                                               MAIN
                                                                                     16
   20 MJ=MJ+1
                                                                               MAIN
                                                                                     17
      READ(NPLOT) NCYCLE, TIM(MJ), VCEN(MJ), KS, (CINS(I), I=1, KS)
                                                                               MAIN
                                                                                     18
      IF(NCYCLE .GE. MAXA) CALL GRAPH
                                                                               MAIN
                                                                                     19
C
                                                                               MAIN
                                                                                     20
      TEMP=0.0
                                                                               MAIN
                                                                                     21
      DO 22 I=1,20
                                                                               MAIN
                                                                                     22
      J=MJ+MAXA*(I-1)
                                                                               MAIN
                                                                                     23
      TEMP=TEMP+CINS(I)
                                                                               MAIN
                                                                                     24
      PKINE(J) = TEMP
                                                                               MAIN
                                                                                     25
   22 CONTINUE
                                                                               MAIN
                                                                                     26
      GOTO 10
                                                                               MAIN
                                                                                     27
C
                                                                               MAIN
                                                                                     28
   25 READ (NPLOT) TIME, MAXZ, (XJ(I), SJ(I), PJ(I), SDJ(I), GTEMP(I),
                                                                               MAIN
                                                                                     29
     1 IV FL AG(I), I=1, MAXZ)
                                                                               MAIN
                                                                                     30
      TIME=TIM(MJ)
                                                                               MAIN
                                                                                     31
      DO 30 I=1.MAXZ
                                                                               MAIN
                                                                                     32
                                                                               MAIN
      SJ(I)=SJ(I)*DCPSI
                                                                                     33
      PJ(I)=PJ(I)*DCPSI
                                                                               MAIN
                                                                                     34
                                                                               MAIN
      SDJ(I)=SDJ(I)*DCPSI
                                                                                     35
      SDJ(I)=PJ(I)-0.5*SDJ(I)
                                                                               MAIN
                                                                                     36
                                                                               MAIN
   30 CONTINUE
                                                                                     37
      CALL TPLOT
                                                                               MAIN
                                                                                     38
      GOTO 10
                                                                               MAIN
                                                                                     39
C
                                                                               MAIN
                                                                                     40
   40 CALL GRAPH
                                                                                     41
                                                                               MAIN
      CALL EXIT
                                                                               HAIN
                                                                                     42
       END
                                                                               MAIN
                                                                                     43
```

```
SUBROUTINE TPLOT
      DIMENSION B(1000), SYM1(3), SYM2(3), SYM3(2), STEP(2), SYM4(3), SYM5(2) TPLO
      COMMON (USE MAIN)
                                                                          TPLO
                                                                                 3
                                                                          TPLO
      COPMON /PLOT/B
      DATA (SYM1(I), I=1, 3)/10HSPACIAL CO, 10HORDINATE (,4HCM)>/.
                                                                                 5
                                                                          TPLO
           (SYM2(I), I=1,3)/10HTRANSVERSE, 10H STRESS (P,4HSI)>/,
                                                                          TPLO
                                                                          TPLO
           (SYM3(I), I=1,2)/10HPRESSURE (,5HPSI)>/
                                                                                 7
           (SYM4(I), I=1,3)/10HTANGENTIAL, 10H STRESS (P,4HSI)>/,
                                                                          TPLO
                                                                                 В
           (SYM5(I), I=1,2)/10HTEMPERATUR,2HE>/
                                                                                 9
                                                                          TPLO
                                                                          TPLO
                                                                                10
      XL = 7.0
                                                                          TPLO
      YL = 6.0
                                                                                11
      LINK=1
                                                                          TPLO
                                                                                12
C
                                                                          TPLO
                                                                               13
      XPAGE=12.0
                                                                         TPLO 14
      CALL PLTCCB (XPAGE, 1, B(1), B(1000))
                                                                         TPLO 15
                                                                         TPLO 16
      -----TPL0 17
C
      XBAR=3.0
                                                                          TPLO
                                                                                18
                                                                          TPLO
      YBAR=2.0
                                                                                19
                                                                       TPLO
      CALL FIXSCA (XJ(1),N,XL,XS,XMIN,XMAX,DX)
                                                                                20
      CALL FIXSCA (SJ(1),N,YL,YS,YMIN,YMAX,DY)
CALL PLTCCS (XBAR,YBAR,XMIN,YMIN,XS,YS)
CALL PLTCCA (DX,DY,XMIN,XMAX,YMIN,YMAX,4)
                                                                      TPLO 21
                                                                         TPLO
                                                                                22
                                                                         TPLO
                                                                                23
      CALL PLOTD (XJ,SJ)
                                                                          TPLO
                                                                                24
                                                                      TPLO
      CALL LABELA (DX,DY,XMIN,XMAX,YMIN,YMAX,1.0,1.0)
                                                                                25
      CALL PLTCCS (XBAR, YBAR, 0.0, 0.0, 1.0, 1.0)
CALL PLTCCT (.1, SYM1(1), 0.0, 1.0, 2.3, -0.6)
                                                                          TPLO
                                                                                26
                                                                         TPLO
                                                                                27
      CALL PLTCCT (.1,7HS=P+SD>,1.0,0.0,-1.4,2.7)
CALL PLTCCT (.1,SYM2(1),1.0,0.0,-1.2,1.8)
                                                                         TPLO
                                                                                28
                                                                         TPLO
                                                                                29
                                                                     - - TPLO
C
   50 CALL PLTCCT (.1,6HCYCLE>,0.0,1.0,0.0,-1.0)
                                                                         TPLO
                                                                                31
      ENCODE (6.100, STEP) NCYCLE
                                                                         TPLO
                                                                                32
      CALL PLTCCT (.1,STEP(1),0.0,1.0,0.6,-1.0)
                                                                          TPLO
                                                                                33
      CALL PLTCCT (.1,6HTIME=>,0.0,1.0,0.0,-1.2)
                                                                          TPLO
                                                                                34
      ENCODE(12,110,STEP) TIME
                                                                         TPLO
                                                                                35
      CALL PLTCCT (.1,STEP(1),0.0,1.0,0.6,-1.2)
                                                                         TPLO
                                                                                36
                                                                         TPLO
      GOTO(55,60,65,70),LINK
                                                                                37
C
      -----TPLO
                                                                                38
                                                                         TPLO
      CALL FIXSCA (PJ(1),N,YL,YS,YMIN,YMAX,DY)
                                                                          TPLO
                                                                                40
      CALL PLTCCS (XBAR, YBAR, XMIN, YMIN, XS, YS)
                                                                          TPLO
                                                                                41
      CALL PLTCCA (DX,DY,XMIN,XMAX,YMIN,YMAX,4)
                                                                          TPLO
                                                                                42
                                                                          TPLO
      CALL PLOTO (XJ.PJ)
                                                                                43
      CALL LABELA (DX,DY,XMIN,XMAX,YMIN,YMAX,1.0,1.0)
                                                                         TPLO 44
      CALL PLTCCS (XBAR, YBAR, 0.0, C.0, 1.0, 1.0)
                                                                          TPLO
                                                                               45
      CALL PLTCCT (.1.SYM1(1),0.0.1.0.2.3.-0.6)
                                                                          TPLO
                                                                                46
      CALL PLTCCT (.1,SYM3(1),1.0,0.0,-1.2,2.3)
                                                                          TPLO
                                                                                47
      LINK=2
                                                                         TPLO
                                                                               4 B
      GOTO 50
                                                                         TPLO
                                                                                49
       ----- GRAPH THREE ------
C
                                                                       ---TPLO
                                                                                50
   60 YBAR=22.0
                                                                         TPLO
                                                                                51
      CALL FIXSCA (SDJ(1), N, YL, YS, YMIN, YMAX, DY)
                                                                                52
                                                                         TPLO
      CALL PLICCS (XBAR, YBAR, XMIN, YMIN, XS, YS)
                                                                          TPLO
                                                                                53
      CALL PLTCCA (DX.OY, XMIN, XMAX, YMI', YMAX, 4)
                                                                          TPLO
                                                                                54
      CALL PLOTO (XJ, SOJ)
                                                                         TPLO
                                                                                55
      CALL LABELA (OX, OY, XMIN, XMAX, YMIN, YMAX, 1.0, 1.0)
                                                                         TPLO
                                                                                56
      CALL PLTCCS (XBAR, YBAR, 0.0, 0.0, 1.0, 1.0)
                                                                         TPLO
                                                                                57
      CALL PLTCCT (.1, SYM1(1), 0.0, 1.0, 2.3, -0.6)
                                                                         TPLO
                                                                                58
      CALL PLTCCT (.1,10HS=P-.5+SD>,1.0,0.0,-1.4,2.5)
                                                                          TPLO
                                                                                59
      CALL PLTCCT (.1,SYM4(1),1.0,0.0,-1.2,1.8)
                                                                          TPLO
                                                                                60
```

		LINK=3 GOTO 50	FBF8	61
C	•	GRAPH FOUR	TPLO	63
	65	CALL PLTCCP	TPLO	64
		XBAR=3.0	TPLO	65
		YBAR=2.0	TPLO	66
		CALL FIXSCA (GTEMP(1),N,YL,YS,YMIN,YMAX,DY)	TPLO	67
		CALL PLTCCS (XBAR, YBAR, XMIN, YMIN, XS, YS)	TPLO	68
		CALL PLTCCA (DX,DY,XMIN,XMAX,YMIN,YMAX,4)	TPLO	69
		CALL PLOTD (XJ,GTEMP)	TPLO	70
		CALL LABELA- (DX,DY,XMIN,XMAX,YMIN,YMAX,1.0,1.0)	TPLO	71
		CALL PLTCCS (XBAR, YBAR, 0.0, 0.0, 1.0, 1.0)	TPLO	72
		CALL PLTCCT (.1,SYM1(1),0.0,1.0,2.3,-0.6)	TPLO	73
		CALL PLTCCT (.1,SYM5(1),1.0,0.0,-1.0,2.5)	TPLO	74
		LINK=4	TPLO	75
		GOTO 50	TPLO	76
	70	CALL PLTCCP	TPLO	77
		RETURN	TPLO	7B
C			TPLO	79
	100	FORMAT(14,2H >)	TPLO	80
	110	FORMAT(E12.7,2H >)	TPLO	81
		END	TPLO	82

```
SUBROUTINE GRAPH
                                                                                   2
      DIMENSION B(1000), SYM1(2), SYM2(2), SYM3(4)
                                                                           GRAP
      COMMON (USE MAIN)
                                                                           GRAP
                                                                                   3
      COMMON /PLOT/B
                                                                           GRAP
                                                                                   4
      DATA (SYM1(I), I=1,2)/10HTIME (NAMO,9HSECONDS)>/,
                                                                           GRAP
                                                                                   5
           (SYM2(I), I=1,2)/lohkINETIC EN,5HERGY>/
                                                                           GRAP
                                                                                   6
      DATA (SYM3(I), I=1,4)/10HVELCCITY 0,10HF MASS CEN,10HTER (CM/SE,3HCGRAP
                                                                                   7
                                                                                   8
C.
                                                                           GRAP
                                                                                   Q
      N=MJ
                                                                           GRAP
                                                                                  10
      XL=7.0
                                                                           GRAP
                                                                                  11
      YL =6.0
                                                                           GRAP
                                                                                  12
      XSCALE=1.0E9
                                                                           GRAP
                                                                                  13
C
       -----GRAPH ONE ------GRAPH ONE
                                                                                  14
      XBAR=3.0
                                                                                  15
                                                                           GRAP
      YBAR=2.0
                                                                           GRAP
                                                                                  16
      CALL FIXSCA (TIM(1), N, XL, XS, XMIN, XMAX, DX)
                                                                           GRAP
                                                                                  17
      CALL PLTCCS (XBAR, YBAR, 0.0, 0.0, 1.0, 1.0)
                                                                           GRAP
                                                                                  18
                                                                           GRAP
      CALL PLTCCT (.1, SYM1(1), 0.0, 1.0, 2.5, -0.6)
                                                                                  19
      CALL PLTCCT (.1,SYM2(1),1.0,0.0,-1.2,2.3)
                                                                           GRAP
                                                                                  20
      DO 10 I=1.KS
                                                                           GRAP
                                                                                  21
      J=1+MAXA*(I-1)
                                                                           GRAP
                                                                                  22
      IF(J .EQ. 1) CALL FIXSCA (PKINE(J), N, YL, YS, YMIN, YMAX, DY)
                                                                           GRAP
                                                                                 23
      CALL CONSCA (PKINE(J), N, YL, YS, YMIN, YMAX, DY)
                                                                           GRAP
                                                                                  24
   10 CONTINUE
                                                                           GRAP
                                                                                  25
C
                                                                           GRAP
                                                                                 26
      CALL PLTCCS (XBAR, YBAR, XMIN, YMIN, XS, YS)
                                                                           GRAP
                                                                                 27
      CALL PLTCCA (DX,DY,XMIN,XMAX,YMIN,YMAX,4)
                                                                           GRAP
                                                                                 28
                                                                           GRAP
                                                                                  29
      DO 20 I=1.KS
      J=1+MAXA*(I-1)
                                                                           GRAP
                                                                                  30
      CALL PLTCCD (1,0,TIM(1),PKINE(J),N,0,XMIN,XMAX,YMIN,YMAX)
                                                                           GRAP
                                                                                  31
   20 CONTINUE
                                                                           GRAP
                                                                                 32
      CALL LABELA (DX,DY,XMIN,XMAX,YMIN,YMAX,XSCALE,1.0)
                                                                           GRAP
                                                                                  33
С
      ----- GRAPH TWO -----
                                                                          -GRAP
                                                                                  34
      YBAR=12.0
                                                                           GRAP
                                                                                 35
      CALL PLTCCS (XBAR, YBAR, 0.0, 0.0, 1.0, 1.0)
                                                                           GRAP
                                                                                  36
      CALL PLTCCT (.1,SYM1(1),0.0,1.0,2.5,-0.6)
                                                                           GRAP
                                                                                  37
      CALL PLTCCT (.1, SYM3(1), 1.0, 0.0, -1.2, 1.3)
                                                                           GRAP
                                                                                 38
      CALL FIXSCA ( VCEN(1), N, YL, YS, YMIN, YMAX, DY)
                                                                           GRAP
                                                                                 39
      CALL PLTCCS (XBAR, YBAR, XMIN, YMIN, XS, YS)
                                                                           GRAP
                                                                                  40
      CALL PLTCCA (DX,DY,XMIN,XMAX,YMIN,YMAX,4)
                                                                           GRAP
                                                                                  41
      CALL PLTCCD (1,0,TIM(1),VCEN(1),N)
                                                                           GRAP
                                                                                  42
      CALL LABELA (DX, DY, XMIN, XMAX, YMIN, YMAX, XSCALE, 1.0)
                                                                           GRAP
                                                                                  43
      CALL PLTCCP
                                                                           GRAP
                                                                                  44
      RETURN
                                                                           GRAP
                                                                                 45
      END
                                                                           GRAP
                                                                                 46
```

		SUBROUTINE PLOTD (Y1,Y2) COMMON (USE MAIN)	PLOT	1
		DIMENSION X1(1000), X2(1000), Y1(1), Y2(1)	PLOT	3
C			PLOT	4
		K=0	PLOT	5
		DO 5 J=1, MAX2	PLOT	6
		IF(IVFLAG(J) .EQ. 0)GOTO 10	PLOT	7
		K=K+1	PLOT	8
		X1(K)=Y1(J)	PLOT	9
		X2(K)=Y2(J)	PLOT	10
	5	CONTINUE	PLOT	11
	10	CALL PLTCCD (1,0,X1(1),X2(1),K)	PLOT	12
		K=0	PLOT	13
		IF(J .GE. MAXZ) RETURN	PLOT	14
		G0T0 5	PLOT	15
		END	PLOT	16

APPENDIX C

CODING CHANGES TO PETROS 3

Two changes were required in the BRL version of PETROS 3 for it to be able to accept RIP data. The first change was the alteration of the material properties subroutine, MATPRO, to permit the introduction of variable material properties (E, ν , ρ , σ) for each Gaussian layer through the thickness.

The second change was made in order to have an initial stress distribution through the thickness (see Figure 8) rather than a zero stress state at the start of the calculation. The subroutine ISTRES reads spatial coordinates and tangential stress (see Table A-1). After all cards are read, linear interpolation through the thickness for values of tangential stress at each Gauss point is performed. Then the initial strain energy is determined. This subroutine is called from within subroutine STEP1, following card STP11020, page 349, Reference 5, by the statement CALL ISTRES; it is only called at time step zero.

The following is a FORTRAN listing of the two subroutines as they are used in the BRL version of PETROS 3.

```
****
      SURROUTINE MATPRO
                                                                                       1
C
      EVALUATE MATERIAL PROPERTIES
                                                                               MATP
                                                                                       2
C
      THIS VERSION IS FOR RIP MATERIAL PROPERTIES
                                                                               MATP
                                                                                       3
                                                                               MATP
                                                                                       4
      COMMON (USE MAIN)
                                                                               MATP
                                                                                       5
      COPMON /CONTN2/
                               EE1(4), EE2(4),
                                                        HNU1(4), HNU2(4),
                                                                               MATP
                                                                                       6
     1CONSTZ(4), CONSTI(4), CONSTZ(4), EXPONZ(4), EXPONI(4), EXPONZ(4),
                                                                               MATP
                                                                                       7
               RHO1(4), RHO2(4), SIG1DZ(4,5), SIG1D1(4,5), SIG1D2(4,5),
                                                                               MATP
                                                                                       8
     3EPS1DZ(4,5),EPS1D1(4,5),EPS1D2(4,5),COEFFZ(4,5),SIGMAZ(4,5),
                                                                               MATP
                                                                                       Q
     4THIKNS(4,14,21), CENTRZ(4,14,21), ALPHAZ(4), EEZ(6,6), HNUZ(6,6),
                                                                                      10
                                                                               MATP
     5RH0Z(6,6)
                                                                               MATP
                                                                                      11
      DIMENSION SIGIDT( 5), EPSIDT( 5), EEET( 6)
                                                                               MATP
                                                                                      12
C
                                                                               MATP
                                                                                      13
      IF (QMATPR) GC TO 103
                                                                               MATP
                                                                                      14
      WRITE(NWRITE, 10)
                                                                               MATP
                                                                                      15
      FORMAT('I SUBROUTINE MATPRO RIP MATERIAL PROPERTIES')
                                                                               MATP
                                                                                      16
   11 FORMAT(5515.61
                                                                               MATP
                                                                                      17
      DO 101 ILAY=1, NLAYER
                                                                               MATP
                                                                                      18
      READ (NREAD, II) CONSTZ(ILAY), EXPONZ(ILAY), ALPHAZ(ILAY)
                                                                               MATP
                                                                                      19
      WRITE (NwRITE, 11) CONSTZ(ILAY), EXPONZ(ILAY), ALPHAZ(ILAY)
                                                                               MATP
                                                                                      20
      NGAUSL=NGAUSS(1LAY)
                                                                               MATP
                                                                                      21
      DO 101 ICAU = I, NGAUSL
                                                                               MATP
                                                                                      22
      READ (NREAD, 11) RHOZ (ILAY, IGAU ). EFZ (ILAY, IGAU ).
                                                                               MATP
                                                                                      23
     1HNUZ(ILAY, IGAU ), SIGIDZ(ILAY, IGAU )
                                                                               MATP
                                                                                      24
      WRITE (NWRITE, 11) RHOZ(ILAY, IGAU ), EEZ(ILAY, IGAU ),
                                                                                     25
                                                                               MATP
     1HNUZ(ILAY, IGAU ), SIGIDZ(ILAY, IGAU )
                                                                               MATP
                                                                                      26
  101 CONTINUE
                                                                               MATP
                                                                                      27
      OMATPR=.TRUE.
                                                                               MATP
                                                                                      28
C
                                                                               MATP
                                                                                      29
  103 RHG=RHOZ(ILAYER, IGAUSS)
                                                                               MATP
                                                                                      30
      EE = EEZ (ILAYER, IGAUSS)
                                                                               MATP
                                                                                      31
      HNU=HNUZ(ILAYER, IGAUSS)
                                                                               MATP
                                                                                      32
      CONST=CONSTZ(ILAYER)
                                                                               MATP
                                                                                      33
      EXPON=EXPONZ(IL AYER)
                                                                               MATP
                                                                                      34
      ALPHA=ALPHAZ(ILAYER)
                                                                               MATP
                                                                                      35
C
                                                                               MATP
                                                                                     36
      NSBL=NSUBL(ILAYER)
                                                                               MATP
                                                                                      37
      DO 100 ISUBL = 1, NSAL
                                                                               MATP
                                                                                     38
      COEFF(ISUBL)=1.0
                                                                               MATP
                                                                                     39
      SIGMA(ISUBL) = SIGIDZ(ILAYER, IGAUSS)
                                                                               MATP
                                                                                     40
 100
      CONTINUE
                                                                               MATP
                                                                                     41
      RETURN
                                                                               MATP
                                                                                     42
      END
                                                                               MATP
                                                                                     43
```

```
***
      SUPROUTINE ISTRES
      COMMON (USE MAIN)
                                                                              ISTRE
                                                                                     2
      COMMON /CCNTN3/ TAU11(14,21, 6), TAU12(14,21, 6), TAU22(14,21, 6)
                                                                              ISTRE
                                                                                     3
                                                                              ISTRE
      DIMENSION X(100), STRES(100)
                                                                              ISTRE
C
                                                                              ISTRE
      IF(QSTRES) GCTO 3C
                                                                              ISTRE
                                                                                     7
      QSTRES=.TRUE.
                                                                              ISTRE
                                                                                     8
         READ INITIAL STRESS DATA FROM CARDS
C
      READ (5,300) N
                                                                                     9
                                                                             ISTRE
      DO 5 I=1,N
                                                                              ISTRE 10
                                                                              ISTRE 11
      READ (NREAD, 510) X(I), STRES(I), OUM
                                                                              ISTRE 12
      X(I)=X(I)-X(I)
                                                                              ISTRE 13
    5 CONTINUE
                                                                             ISTRE 14
      HALF=.5*X(N)
      NN = N - 1
                                                                              ISTRE 15
                                                                              ISTRE 16
      X(1) = HALF
                                                                              ISTRE 17
      X(N)=-HALF
                                                                             ISTRE 18
      DO 10 I=2,NN
      X(I) = HALF-X(I)
                                                                             ISTRE 19
   10 CONTINUE
                                                                             ISTRE 20
                                                                             ISTRE 21
C
                                                                             ISTRE 22
      WRITE(6,520)
                                                                             ISTRE 23
ISTRE 24
      DO 20 I=1.N
      WRITE(6,530) X(1), STRES(1)
                                                                             ISTRE 25
   20 CONTINUE
C
                                                                             ISTRE 26
   30 IF(Z.LT.X(N) .OR. Z.GT.X(1))GCTO 50
                                                                              ISTRE 27
                                                                              ISTRE 28
      CO 40 I=2.N
                                                                              ISTRE 29
      IF(Z .GE. X(I))GOTO 45
                                                                              ISTRE 30
   40 CONTINUE
   45 IM=I-1
                                                                              ISTRE
                                                                                    31
      FSTRE=STRES(IM)+(Z-X(IM))*(STRES(I)-STRES(IM))/(X(I)-X(IM))
                                                                              ISTRE 32
      GOTO 55
                                                                              ISTRE 33
                                                                              ISTRE 34
   50 FSTRE=0.0
   55 00 151 LA=1,2
                                                                             ISTRE 35
                                                                              ISTRE 36
      CO 151 LE=1.2
      TS(LA,LB) = C.O
                                                                              ISTRF 37
                                                                              ISTRE 38
  151 G(LA,LB) = A(LA,LB) - 2.*Z*B(LA,LB)
                                                                              ISTRE 39
      G0=G(1,1)*G(2,2)-G(1,2)**2
                                                                              ISTRE 40
      SRG=SQRT(GO)
                                                                              ISTRE 41
C
                                                                              ISTRE 42
      NS BL = NSUBL (ILAYER)
                                                                              ISTRE 43
      DO 160 ISB=1,NSBL
                                                                              ISTRE 44
      12 = 17 + 1
       TAU11(I1, I2, IZ) = FSTRE/G(1,1)
                                                                              ISTRE 45
                                                                              ISTRE 46
      TAU12(I1, I2, IZ)=0.0
                                                                              ISTRF 47
      TAU22(I1, I2, IZ)=FSTRE/G(2,2)
       TAUSBL(1,1)=TAU11(I1,I2,IZ)
                                                                              ISTRE 4B
                                                                              ISTRE 49
      TAUSBL(1,2)=TAU12(I1,I2,IZ)
                                                                              ISTRE 50
       TAUSBL(2,2)=TAU22(I1,I2,IZ)
                                                                              ISTRE 51
      TAUSBL(2.1) = TAUSBL(1.2)
                                                                              ISTRE 52
C
      DO 155 LA=1,2
                                                                              ISTRE 53
      EO 155 LB=1.2
                                                                              ISTRE 54
      TM(LA,LB)=TAUSBL(LA,1)*G(1,LB)+TAUSBL(LA,2)*G(2,LB)
                                                                              ISTRE 55
  155 TS(LA,LB)=TS(LA,LB) + COEFF(ISB)*TM(LA,LP)
                                                                             ISTRE 56
                                                                             ISTRE F7
  160 CONTINUE
C
            STRAIN ENERGY
                                                                              ISTRE 53
                                                                              ISTRE 59
      NG AUSL = NG AUSS (ILAYER)
```

	PAR=THICKN*.5*WEIGHT(IGAUSS,NGAUSL)	ISTRE	60
	CB = PAR*CA/EE		
	<pre>IF(I1.EQ.ISTR1 .OR. I1.EQ.ISTR3)SRG=0.5*SRG</pre>	ISTRE	62
	IF(I2.EG.ISTR2 .OR. I2.FQ.ISTR4)SRG=0.5*SRG	ISTRE	63
	STREN=STREN+((TS(1,1)+TS(2,2))**2-2.*(1.0+HNU)*(TS(1,1)*TS(2,2)	ISTRE	64
	1 - TS(1,2)*TS(2,1)))*SRG*CB	ISTRE	65
	RETURN	ISTRE	66
C		ISTRE	67
	500 FORMAT(15)	ISTRE	68
	510 FORMAT(3515.6)	ISTRE	69
	520 FORMAT(1+1,52x,28HSTRESS THROUGH THE THICKNESS/70x,10HTANGENTAIL/	ISTRE	70
	153x,9HTH[CKNESS,1Cx,6HSTRESS)	ISTRE	71
	530 FORMAT(51X, E13.6, 4X, E13.6)	ISTRE	72
	ENC	ISTRE	73

APPENDIX D

TEMPERATURE VARIATION DURING STRUCTURAL RESPONSE

As noted previously, the PETROS 3 calculations were made on the premise that the initial temperature distribution through the thickness of the residual plate was frozen for the duration of the structural response prediction (5,520 microseconds). Although this duration is quite brief, it was felt desirable to determine the extent of temperature redistribution which could occur during this period. Consequently, a heat transfer problem for the residual aluminum plate was formulated. By assuming that the edges of the plate were insulated, the problem is reduced to one spatial dimension: the through-thickness direction. On the front and back faces of the residual plate the boundary conditions were taken to be the radiation-type. The solution to this intial-value problem was obtained by using the CINDA code ¹⁷. The results, consisting of a comparison of temperature distributions at the initial and final times of the PETROS 3 calculation, are shown in Figure D-1. The abscissa in this plot represents the distance from the front face of the residual plate. It may be seen that there is an appreciable change in temperature during the plate response, especially in the neighborhood of the front face.

It would obviously be desirable to take this temperature variation into account in future structural response calculations of this type. This may readily be accomplished if one is willing to make the plausible assumption that thermomechanical coupling can be neglected. The CINDA code could be employed to obtain the transient temperature distributions (at frequent time intervals) and storage of these data on a magnetic tape could be read by the PETROS 3 code as the structural response solution is marched out in time.

Recalling that the PETROS 3 calculations were made using both cold and heated material properties in an effort to bound the true solution, the latter case corresponding to instant degradation of material strength with temperature, raises another question as to the proper modeling of the physical event when heat transfer is considered. That is, should the instantaneous recovery of material strength be allowed in those portions of the structure which are cooking? Full recovery of strength does not occur in metals which are subjected to elevated temperatures for long soak times and then slowly permitted to cool. While the response under consideration certainly does not allow time for annealing, it would be more consistent with the objective of predicting a bound on the response in the heated material case if one allowed no recovery of material strength following the maximum temperature excursion.

¹⁷ J. D. Gask, "Chrysler Improved Numerical Differencing Analyser for Third Generation Computers," Chrysler Corporation Space Division, TN-AP-67-287, October 1967.

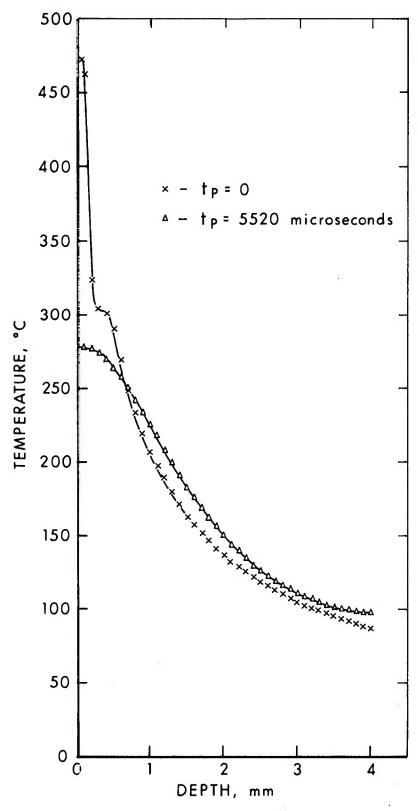


Figure D-1. Temperature Profiles at Beginning and End of Structural Response

No. of Copies		No. of	
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314		Commander Field Command Defense Nuclear Agency ATTN: Tech Lib, FCWS-SC Kirtland AFB, NM 87115
1	Director Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209		Chief Las Vegas Liaison Office Field Command TD, DNA P.O. Box 2702 ATTN: Document Control Las Vegas, NV 89104
1	Director Weapons Systems Evaluation Group, ODDR&E ATTN: CPT Donald E. McCoy Washington, DC 20305	1	DNA Information and Analysis Center TEMPO, General Electric Co. Center for Advanced Studies ATTN: DASIAC
1	Assistant to the Secretary of Defense (Atomic Energy) ATTN: Document Control Washington, DC 20301	,	816 State Street Santa Barbara, CA 93102
1	Office Secretary of Defense Office DDR&E ATTN: Mr. J. Persh, Staff Specialist Materials and	_	Director Defense Communications Agency ATTN: NMCSSC (Code 510) Washington, DC 20305 Director
	Structures Washington, DC 20301		Defense Intelligence Agency ATTN: DT-1C, Dr. J. Vorona DT-2
5	Director Defense Nuclear Agency ATTN: Mr. J. F. Moulton, SPAS Dr. LaVier, STVL Cdr Alderson, RATN Dr. E. Sevin, SPSS Dr. M. C. Atkins, DDST Washington, DC 20305	5 3	Washington, DC 20301 Director Institute for Defense Analyses ATTN: Dr. J. Menkes Dr. J. Bengston Tech Info Ofc 400 Army-Navy Drive Arlington, VA 22202
4	Director Defense Nuclear Agency ATTN: SPTL Tech Lib (2 cys) APSI (ARCHIVES) STSP Washington, DC 20305	2	Chairman Joint Chiefs of Staff ATTN: J-3, Operations J-5, Plans & Policy (R&D Division) Washington, DC 20301

No. of Copies		No. o	
Copies	organización	Copie	Organization
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Tank Automotive Development Command ATTN: DRDTA-RWL Warren, MI 48090
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCPM-CS 5001 Eisenhower Avenue Alexandria, VA 22333	2	Commander US Army Mobility Equipment Research & Development Command ATTN: Tech Docu Cen, Bldg. 315 DRSME-RZT Fort Belvoir, VA 22060
1	Commander US Army Aviation Systems CommandaTTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166	1 nd	Commander US Army Armament Materiel Readiness Command ATTN: Technical Library Rock Island, IL 61202
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center	1	Commander US Army Frankford Arsenal ATTN: SARFA-L6100, Dr. P. Flynn Philadelphia, PA 19137
1	Moffett Field, CA 94035 Commander US Army Electronics Command ATTN: DRSEL-RD	4	Commander US Army Armament R&D Command ATTN: DRDAR-LC, Dr. J. Frasier DRDAR-LCF, Mr. G. Demitrack
3	Fort Monmouth, NJ 07703 Commander US Army Missile Research and		DRDAR-LCN, Mr. W. Benson DRDAR-LCN, Mr. P. Angelotti Dover, NJ 07801
	Development Command ATTN: MIRADCOM-R MIRADCOM-AOM, Library MIRADCOM-RSS, Mr. B. Co Redstone Arsenal, AL 35809	1 bb	Commander US Army Watervliet Arsenal Watervliet, NY 12189
2	Commander US Army Missile Research and Development Command ATTN: MIRADCOM-RX Mr W Tho	mas	

ATTN: MIRADCOM-RX, Mr. W. Thomas MIRADCOM-RR, Mr. L. Lively Redstone Arsenal, AL 35809

No. o		No. of	
Copie	s Organization	Copies Organization	
9	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI Dr. R. Oswald Mr. F. N. Wimenitz Mr. L. Belliveau Mr. J. Corrigan	1 Commander US Army TRADOC Syste Analysis Activity ATTN: ATAA-SA White Sands Missile NM 88002	
	Mr. J. Gwaltney Mr. E. J. Gaul Mr. D. Schallhorn DRXDO-RBH Mr. P. A. Caldwell	l Interservice Nuclean School ATTN: Technical Lib Kirtland AFB, NM 87	rary
	2800 Powder Mill Road Adelphi, MD 20783	1 Director DARCOM Field Safety ATTN: DRXOS-ES	Activity
. 3	Commander US Army Materials and	Charlestown, IN 471	11
	Mechanics Research Center ATTN: DRXMR-ATL DRXMR-ED Mr. R. Shea DRXRD, J. Dignam Watertown, MA 02172	1 Director DARCOM, ITC ATTN: Dr. Chiang Red River Depot Texarkana, TX 75501	
1	Commander US Army Natick Research and Development Command ATTN: DRXRE, Dr. D. Sieling Natick, MA 01762	1 Director US Army Ballistic Mi Defense Program Of ATTN: J. Shea 5001 Eisenhower Aven Alexandria, VA 2233	fice ue
1	Commander US Army Foreign Science and Technology Center ATTN: Rsch & Data Branch Federal Office Building 220 - 7th Street, NE Charlottesville, VA 22901	6 Director US Army Ballistic Mi Defense Advanced T Center ATTN: M. Whitfield J. Davidson M. Capps	
2	Commander US Army Nuclear Agency ATTN: ACTA-NAW Technical Library Fort Bliss, TX 79916	N. J. Hurst J. G. Bauxbau J. Veeneman P.O. Box 1500, West Huntsville, AL 3580	Station

No. or Copies		No. of	
1	Director US Army Engineer School Fort Belvoir, VA 22060	1	Assistant Secretary of the Navy (Research & Development) Navy Department Washington, DC 20350
2	HQDA (DAMA-AR; NCL Div) Washington, DC 20310	1	Chief of Naval Material
1	Commander US Army Research Office P.O. Box 12211 Research Triangle Park	4	ATTN: Code 418, Dr. T. Quinn Navy Department Arlington, VA 22217 Commander
	NC 27709		David W. Taylor Naval Ship Research & Development Center
1	Director US Army Engineer Waterways Experiment Station P.O. Box 631 Vicksburg, MS 39180		ATTN: Dr. W. W. Murray, Code 17 Mr. R. Jones, Code 1725 Dr. G. Everstine, Code 1844 Dr. B. Whang, Code 174.4 Bethesda, MD 20084
1	US Army Eng Div ATTN: Mr. Char P.O. Box 1600 Huntsville, AL 35809	2	Commander US Naval Surface Weapons Center ATTN: Mr. J. C. Talley Dr. W. Soper Dahlgren, VA 22448
1	US Army Corps of Engineers Huntsville Division ATTN: Dick Bradshaw HNDED-SR P.O. Box 1600, West Station Huntsville, AL 35807	4	Commander US Naval Surface Weapons Center ATTN: Dr. Leon Schindel Dr. Victor Dawson Dr. P. Huang Code 121, Navy Nuclear
2	Director Joint Strategic Target Planning Staff ATTN: JLTW	1	Programs Office Silver Spring, MD 20910 Commander
	JPTP Offutt AFB Omaha, NB 68113		Naval Surface Weapons Center ATTN: Code 241 (Mr. Proctor) Silver Spring, MD 20910
4	Chief of Naval Operations ATTN: OP-03EG OP-97 OP-754 OP-985FZ Department of the Navy Washington, DC 20350	1	Commander US Naval Weapons Center ATTN: Code 6031 Dr. W. Stronge China Lake, CA 93555

DIGINIBOTION LIST				
No. of Copies		No. of Copies		
1	Commander US Naval Ship Research and Development Center Facility		ADTC (ADBPS-12) Eglin AFB, FL 32542	
	ATTN: Mr. Lowell T. Butt Underwater Explosions Research Division		USAFTAWC (OA) Eglin AFB, FL 32542	
	Portsmouth, VA 23709	3	AFWL (WLA; WLD; WLRP, LTC H. C. McClammy)	
1	Commander US Naval Weapons Evaluation		Kirtland AFB, NM 87117	
	Facility ATTN: Document Control Kirtland AFB Albuquerque, NM 87117	4	AFWL (SYT, MAJ W. A. Whitaker; SRR; SUL; SR) Kirtland AFB, NM 87117	
1	Commander	1	AFFDL (FDTR, Dr. R. M. Bader) Wright-Patterson AFB, OH 45433	
	Naval Civil Engineering Lab ATTN: J. Tancreto Port Hueneme, CA 93041	4	AFML (MAMD, Dr. T. Nicholas; MAS; MANC, Mr. D. Schmidt; MAX, Dr. A. M. Lovelace)	
1	Commander US Naval Research Laboratory		Wright-Patterson AFB, OH 45433	
	ATTN: Code 2027, Tech Lib Washington, DC 20375	2	FTD (TDPTN; TDFBD, J. D. Pumphrey) Wright-Patterson AFB, OH 45433	
2	Superintendent US Naval Postgraduate School ATTN: Tech Reports Section	1	Headquarters Energy Research and	
	Code 57, Prof R. Ball Monterey, CA 93940		Development Administration Department of Military Applications	
1	HQ USAF (AFNIE-CA) Washington, DC 20330		Washington, DC 20545	
4	HQ USAF (AFRDQ; AFRDOSM; AFRDPM; AFRD)	2	Headquarters National Aeronautics and Space Administration	
1	Washington, DC 20330 AFSC (DSCPSL)		ATTN: Mr. J. Enders, Code RAO Mr. K. Strass, Code RY Washington, DC 20546	
1	Andrews AFB Washington, DC 20331		washington, DC 20340	

2 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542

No. of Copies		No. of	
	National Aeronautics and Space Administration Aerospace Safety Research and Data Institute ATTN: Mr. S. Weiss	1	National Academy of Sciences ATTN: Mr. D. G. Groves 2101 Constitution Avenue, NW Washington, DC 20418
	Mail Stop 6-2 Mr. R. Kemp Mail Stop 6-2 Lewis Research Center Cleveland, OH 44135	1	Aeronautical Research Associates of Princeton, Inc. ATTN: Dr. C. Donaldson 20 Washington Road Princeton, NJ 08540
1	Director NASA Scientific and Technical Information Facility ATTN: SAK/DL P.O. Box 8757	1	Aerospace Corporation ATTN: Dr. Harris Mayer P.O. Box 95085 Los Angeles, CA 90045
	Baltimore/Washington International Airport, MD 212	2 240	AVCO Corporation Structures and Mechanics Dept ATTN: Dr. William Broding
1	Director Lawrence Livermore Laboratory Technical Information Division P.O. Box 808 Livermore, CA 94550	n 2	Mr. J. Gilmore Wilmington, MA 01887 Bell Aerosystems Company ATTN: Dr. W. H. Dukes Mr. J. Padlog
1	Director Los Alamos Scientific Lab ATTN: Dr. J. Taylor P.O. Box 1663 Los Alamos, NM 87544	1	P.O. Box 1 Buffalo, NY 14205 Bell Telephone Laboratories, Inc. ATTN: Mr. M. F. Stevens
6	Sandia Laboratories ATTN: Infor Distr Division Dr. W. Herrmann Dr. S. W. Key Mr. R. D. Krieg Dr. A. Chabai Dr. W. A. von Riesemann Albuquerque, NM 87115		Mountain Avenue Murray Hill, NJ 07971 The Boeing Company Aerospace Group ATTN: Dr. Peter Grafton Dr. D. Strome Mail Stop 8C-68 Seattle, WA 98124
1	Director ATTN: J. Nall P.O. Box 1925 Washington, DC 20505	1	J. G. Engineering Research Associates 3831 Menlo Drive Baltimore, MD 21215

No. of		No. o	
Copies	<u>Organization</u>	Copie	<u>Organization</u>
2	Kaman AviDyne ATTN: Dr. N. P. Hobbs Mr. S. Criscione Northwest Industrial Park 83 Second Avenue Burlington, MA 01803	1	McDonnell Douglas Astronautics Western Division ATTN: Mr. Samuel D. Mihara 3000 Ocean Park Boulevard Santa Monica, CA 90406
3	Kaman Sciences Corporation ATTN: Dr. F. H. Shelton Dr. D. Sachs Dr. R. Keefe 1500 Garden of the Gods Road	1	Physics International ATTN: Dr. G. Richard Fowles San Leandro, CA 94577 R&D Associates ATTN: Dr. Albert L. Latter
1	Colorado Springs, CO 80907 Knolls Atomic Power Lab		P.O. Box 9695 Marina del Rey, CA 90291
	ATTN: Dr. R. A. Powell Schenectady, NY 12309	1	Systems, Science and Software ATTN: Dr. J. K. Dienes P.O. Box 1620
2	Lockheed Missiles and Space Company, Inc. Division of Lockheed Aircraft		La Jolla, CA 92037
	Corporation ATTN: R. Robertson C. Vivian P.O. Box 504 Sunnyvale, CA 94088	2	Battelle Columbus Laboratories ATTN: Dr. L. E. Hulbert Mr. J. E. Backofen, Jr. 505 King Avenue Columbus, OH 43201
3	Lockheed Missiles and Space Company Aerospace Research Laboratory ATTN: Dr. Bushnell		Brown University Division of Engineering ATTN: Prof R. Clifton Providence, RI 01912
	Dr. R. Hartung Mr. P. Underwood 3251 Hanover Street Palo Alto, CA 94301	1	Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E. A. Witmer
1	Martin Marietta Laboratories ATTN: Mr. R. Goldman 1450 S. Rolling Road Baltimore, MD 21227	1	Cambridge, MA 02139 Massachusetts Institute of Technology
1	Martin Marietta Laboratories ATTN: Mr. J. I. Bacile Orlando, FL 32805		Department of Ocean Engineering ATTN: Prof Norman Jones Cambridge, MA 02139

No. of	2	No. o	f
Copies		Copie:	
1	Ohio State University Department of Engineering Mechanics ATTN: Prof K. K. Stevens Columbus, OH 43210	1	Texas A & M University Department of Aerospace Engineering ATTN: Dr. Walter Haisler College Station, TX 77843
3	Southwest Research Institute ATTN: Dr. H. N. Abramson Dr. W. E. Baker Dr. U. S. Lindholm 8500 Culebra Road	1	University of Alabama ATTN: Dr. T. L. Cost P.O. Box 2908 University, AL 35486
1	San Antonio, TX 78228 Stanford Research Institute	1	University of Delaware Department of Mechanical and Aerospace Engineering
-	ATTN: Dr. W. Reuland 306 Wynn Drive, NW Huntsville, AL 35805		ATTN: Prof J. R. Vinson Newark, DE 19711
1	Stanford University Department of Aeronautics and Astronautics ATTN: Prof C. R. Steele Stanford, CA 94305	1	The City College of the University of New York Department of Mechanical Engineering ATTN: Prof S. B. Menkes New York, NY 10031

Aberdeen Proving Ground

Marine Corps Ln Ofc Dir, USAMSAA ATTN: Dr. J. Sperrazza Mr. R. Norman, GWD